Chin. Phys. Lett.  2005, Vol. 22 Issue (7): 1576-1579    DOI:
Original Articles |
Simulation of Ionic Populations in Hot Dense Plasmas via a New Method beyond the Average Atom Model
WANG Min-Sheng1;LIU Ling-Tao2;LI Jia-Ming2,1
1Key Laboratory of Atomic and Molecular Nanosciences of Education Ministry, Department of Physics, Tsinghua University, Beijing 100084 2Department of Physics, Shanghai Jiao Tong University, Shanghai 200230
Cite this article:   
WANG Min-Sheng, LIU Ling-Tao, LI Jia-Ming 2005 Chin. Phys. Lett. 22 1576-1579
Download: PDF(262KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In theoretical simulations and analysis of diagnostic measurements for hot dense plasmas in the inertial confinement fusion researches, it is usually necessary to consider thousands of transition arrays between a huge number of ionic energy states. Average atom models are adopted for practical purposes. In order to calculate ionic populations of hot dense plasmas more accurately either in local thermodynamic equilibrium or in non-local thermodynamic equilibrium conditions, a simple method beyond the AA model is proposed.
Keywords: 02.60.Cb      05.30.Pr      52.25.Kn     
Published: 01 July 2005
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  05.30.Pr (Fractional statistics systems)  
  52.25.Kn (Thermodynamics of plasmas)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I7/01576
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Min-Sheng
LIU Ling-Tao
LI Jia-Ming
Related articles from Frontiers Journals
[1] WU Guo-Cheng, WU Kai-Teng. Variational Approach for Fractional Diffusion-Wave Equations on Cantor Sets[J]. Chin. Phys. Lett., 2012, 29(6): 1576-1579
[2] CAO Jing, ZHAO A-Meng, SUN Wei-Min, ZONG Hong-Shi. An Improved Quasi-particle Model Framework for Quark-Gluon Plasma from the Path Integral Formalism[J]. Chin. Phys. Lett., 2012, 29(6): 1576-1579
[3] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 1576-1579
[4] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 1576-1579
[5] LI Zhi-Ming, JIANG Hai-Ying, HAN Yan-Bin, LI Jin-Ping, YIN Jian-Qin, ZHANG Jin-Cheng. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor[J]. Chin. Phys. Lett., 2012, 29(3): 1576-1579
[6] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 1576-1579
[7] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 1576-1579
[8] LV Zhong-Quan, XUE Mei, WANG Yu-Shun, ** . A New Multi-Symplectic Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1576-1579
[9] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 1576-1579
[10] DONG He-Fei, HONG Tao**, ZHANG De-Liang . Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media[J]. Chin. Phys. Lett., 2011, 28(3): 1576-1579
[11] R. Mokhtari**, A. Samadi Toodar, N. G. Chegini . Numerical Simulation of Coupled Nonlinear Schrödinger Equations Using the Generalized Differential Quadrature Method[J]. Chin. Phys. Lett., 2011, 28(2): 1576-1579
[12] SHEN Hua, LIU Kai-Xin, **, ZHANG De-Liang . Three-Dimensional Simulation of Detonation Propagation in a Rectangular Duct by an Improved CE/SE Scheme[J]. Chin. Phys. Lett., 2011, 28(12): 1576-1579
[13] XIONG Tao, ZHANG Peng**, WONG S. C., SHU Chi-Wang, ZHANG Meng-Ping . A Macroscopic Approach to the Lane Formation Phenomenon in Pedestrian Counterflow[J]. Chin. Phys. Lett., 2011, 28(10): 1576-1579
[14] A. Zerarka**, O. Haif-Khaif, K. Libarir, A. Attaf . Numerical Modeling for Generating the Bound State Energy via a Semi Inverse Variational Method Combined with a B-Spline Type Basis[J]. Chin. Phys. Lett., 2011, 28(1): 1576-1579
[15] Syed Tauseef Mohyud-Din**, Ahmet Yιldιrιm. Numerical Solution of the Three-Dimensional Helmholtz Equation[J]. Chin. Phys. Lett., 2010, 27(6): 1576-1579
Viewed
Full text


Abstract