Chin. Phys. Lett.  2005, Vol. 22 Issue (7): 1573-1575    DOI:
Original Articles |
Kepler Problem in Hamiltonian Formulation Discussed from Topological Viewpoint
XU Gong-Ou1,2;XU Ming-Jie3;YANG Ya-Tian4
1Department of Physics, Nanjing University, Nanjing 210093 2Centre of Theoretical Nuclear Physics, National Laboratory of Heavy-Ion Accelerator, Lanzhou 730000 3Department of Earth Science, Nanjing University, Nanjing 210093 4Department of Physics, Fujian Normal University, Fuzhou 350007
Cite this article:   
XU Gong-Ou, XU Ming-Jie, YANG Ya-Tian 2005 Chin. Phys. Lett. 22 1573-1575
Download: PDF(201KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Kepler problem in Hamiltonian formulation is discussed from a topological viewpoint. Topological properties for a set of cases designated with conserved quantities l,e and E(l,e) (0≤e<1) are expressed with action-angle variables. The involved canonical transformations are all carried out with classical Poisson brackets. Thus it is possible to extend such a formulation to corresponding quantum-mechanical study under quasi-classical conditions.
Keywords: 02.40.Yy      45.20.Jj      45.50.Pk     
Published: 01 July 2005
PACS:  02.40.Yy (Geometric mechanics)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  45.50.Pk (Celestial mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I7/01573
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Gong-Ou
XU Ming-Jie
YANG Ya-Tian
Related articles from Frontiers Journals
[1] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 1573-1575
[2] XU Wei, YUAN Bo, AO Ping, ** . Construction of Lyapunov Function for Dissipative Gyroscopic System[J]. Chin. Phys. Lett., 2011, 28(5): 1573-1575
[3] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 1573-1575
[4] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 1573-1575
[5] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 1573-1575
[6] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 1573-1575
[7] XIA Li-Li, CAI Jian-Le. Symmetry of Lagrangians of Nonholonomic Controllable Mechanical Systems[J]. Chin. Phys. Lett., 2010, 27(8): 1573-1575
[8] TIAN Jing, QIU Hai-Bo, CHEN Yong,. Nonlocal Measure Synchronization in Coupled Bosonic Josephson Junctions[J]. Chin. Phys. Lett., 2010, 27(7): 1573-1575
[9] ZHENG Shi-Wang, XIE Jia-Fang, WANG Jian-Bo, CHEN Xiang-Wei. Another Conserved Quantity by Mei Symmetry of Tzénoff Equation for Non-Holonomic Systems[J]. Chin. Phys. Lett., 2010, 27(3): 1573-1575
[10] XIE Yin-Li, JIA Li-Qun. Special Lie–Mei Symmetry and Conserved Quantities of Appell Equations Expressed by Appell Fun[J]. Chin. Phys. Lett., 2010, 27(12): 1573-1575
[11] XIE Guang-Xi, CUI Jin-Chao, ZHANG Yao-Yu, JIA Li-Qun. Structural Equation and Mei Conserved Quantity of Mei Symmetry for Appell Equations with Redundant Coordinates[J]. Chin. Phys. Lett., 2009, 26(7): 1573-1575
[12] PANG Ting, FANG Jian-Hui, ZHANG Ming-Jiang, LIN Peng, LU Kai. Perturbation to Mei Symmetry and Generalized Mei Adiabatic Invariants for Nonholonomic Systems in Terms of Quasi-Coordinates[J]. Chin. Phys. Lett., 2009, 26(7): 1573-1575
[13] XUE Yun, SHANG Hui-Lin. Jourdain Principle of a Super-Thin Elastic Rod Dynamics[J]. Chin. Phys. Lett., 2009, 26(7): 1573-1575
[14] WANG Peng, FANG Jian-Hui, WANG Xian-Ming. Discussion on Perturbation to Weak Noether Symmetry and Adiabatic Invariants for Lagrange Systems[J]. Chin. Phys. Lett., 2009, 26(3): 1573-1575
[15] JIA Li-Qun, CUI Jin-Chao, LUO Shao-Kai, YANG Xin-Fang. Special Lie Symmetry and Hojman Conserved Quantity of Appell Equations for a Holonomic System[J]. Chin. Phys. Lett., 2009, 26(3): 1573-1575
Viewed
Full text


Abstract