Chin. Phys. Lett.  2005, Vol. 22 Issue (6): 1464-1467    DOI:
Original Articles |
A Geometry Model for Tortuosity of Streamtubes in Porous Media with Spherical Particles
YUN Mei-Juan1;YU Bo-Ming1,2;ZHANG Bin1;HUANG Ming-Tao1
1Department of Physics and the State Key Laboratory of Plastic Forming and Die & Mold Technology, Huazhong University of Science and Technology, Wuhan 430074 2The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080
Cite this article:   
YUN Mei-Juan, YU Bo-Ming, ZHANG Bin et al  2005 Chin. Phys. Lett. 22 1464-1467
Download: PDF(322KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A geometry model for tortuosity of tortuous streamtubes in porous media with spherical particles is proposed based on the assumption that some particles in a porous medium are unrestrictedly overlapped and hence of different configurations. The proposed model is a function of porosity with no empirical constant imposed on it. The model predictions are found to be in good agreement with the available experimental data.

Keywords: 47.55.Mh      47.15.-x      05.45.Df     
Published: 01 June 2005
PACS:  47.55.Mh  
  47.15.-x (Laminar flows)  
  05.45.Df (Fractals)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I6/01464
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YUN Mei-Juan
YU Bo-Ming
ZHANG Bin
HUANG Ming-Tao
Related articles from Frontiers Journals
[1] YUN Mei-Juan, ZHENG Wei. Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media[J]. Chin. Phys. Lett., 2012, 29(6): 1464-1467
[2] WU Guo-Cheng, WU Kai-Teng. Variational Approach for Fractional Diffusion-Wave Equations on Cantor Sets[J]. Chin. Phys. Lett., 2012, 29(6): 1464-1467
[3] T. Hayat, M. Mustafa**, S. Obaidat . Simultaneous Effects of MHD and Thermal Radiation on the Mixed Convection Stagnation-Point Flow of a Power-Law Fluid[J]. Chin. Phys. Lett., 2011, 28(7): 1464-1467
[4] LI Jian-Hua, YU Bo-Ming** . Tortuosity of Flow Paths through a Sierpinski Carpet[J]. Chin. Phys. Lett., 2011, 28(3): 1464-1467
[5] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 1464-1467
[6] ZHOU Yong-Zhi, LI Mei, GENG Hao-Ran**, YANG Zhong-Xi, SUN Chun-Jing . Hurst's Exponent Determination for Radial Distribution Functions of In, Sn and In-40 wt%Sn Melt[J]. Chin. Phys. Lett., 2011, 28(12): 1464-1467
[7] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 1464-1467
[8] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 1464-1467
[9] A. M. Salem. Temperature-Dependent Viscosity Effects on Non-Darcy Hydrodynamic Free Convection Heat Transfer from a Vertical Wedge in Porous Media[J]. Chin. Phys. Lett., 2010, 27(6): 1464-1467
[10] CAI Jian-Chao, YU Bo-Ming, MEI Mao-Fei, LUO Liang. Capillary Rise in a Single Tortuous Capillary[J]. Chin. Phys. Lett., 2010, 27(5): 1464-1467
[11] DONG Xi-Jie, HU Yi-Fan, WU Yu-Ying, ZHAO Jun, WAN Zhen-Zhu. A Fractal Model for Effective Thermal Conductivity of Isotropic Porous Silica Low-k Materials[J]. Chin. Phys. Lett., 2010, 27(4): 1464-1467
[12] CAI Jian-Chao, YU Bo-Ming, ZOU Ming-Qing, MEI Mao-Fei. Fractal Analysis of Surface Roughness of Particles in Porous Media[J]. Chin. Phys. Lett., 2010, 27(2): 1464-1467
[13] YUN Mei-Juan, YUE Yin, YU Bo-Ming, LU Jian-Duo, ZHENG Wei . A Geometrical Model for Tortuosity of Tortuous Streamlines in Porous Media with Cylindrical Particles[J]. Chin. Phys. Lett., 2010, 27(10): 1464-1467
[14] GUO Long, CAI Xu. The Fractal Dimensions of Complex Networks[J]. Chin. Phys. Lett., 2009, 26(8): 1464-1467
[15] WU Jin-Sui, YIN Shang-Xian, ZHAO Dong-Yu. A Particle Resistance Model for Flow through Porous Media[J]. Chin. Phys. Lett., 2009, 26(6): 1464-1467
Viewed
Full text


Abstract