Chin. Phys. Lett.  2005, Vol. 22 Issue (6): 1460-1463    DOI:
Original Articles |
Linear Stability of Flows in a Squeeze Film
ZHU Ke-Qin;REN Ling;LIU Yi
1Department of Engineering Mechanics, Tsinghua University, Beijing 100084 2Department of Mechanical Engineering, California Institute of Technology, CA, 91125, USA
Cite this article:   
ZHU Ke-Qin, REN Ling, LIU Yi 2005 Chin. Phys. Lett. 22 1460-1463
Download: PDF(245KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study linear stability of viscous flows in a squeeze lubrication film, in which the flow varies slowly in space and time, between two parallel plates moving normal to each other with a slow constant speed, generalizing the inviscid results of Aristov and Gitman [J. Fluid Mech. 464 (2002) 209]. The temporal evolution of two-dimensional disturbances for this physical situation, including the asymptotic behaviour of a long term or the transient behaviour of some time interval, is obtained by the construction of a low-dimensional Galerkin method. It is found that the wall boundaries typically play dual roles of stabilizer and destabilizer. They constrain the development of disturbances and have stabilizing influences. However, they give rise to velocity shear, which is diffused by viscosity and thereby tends to destabilize the flow.
Keywords: 47.15.Fe      47.20.Gv     
Published: 01 June 2005
PACS:  47.15.Fe (Stability of laminar flows)  
  47.20.Gv (Viscous and viscoelastic instabilities)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I6/01460
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHU Ke-Qin
REN Ling
LIU Yi
Related articles from Frontiers Journals
[1] TANG Zhan-Qi, JIANG Nan, ** . TR PIV Experimental Investigation on Bypass Transition Induced by a Cylinder Wake[J]. Chin. Phys. Lett., 2011, 28(5): 1460-1463
[2] LIU Jian-Xin, LUO Ji-Sheng. Numerical Investigation on Inviscid Instability of Streaky Structures in Incompressible Boundary Layer Flow[J]. Chin. Phys. Lett., 2010, 27(8): 1460-1463
[3] HAN Jian, JIANG Nan .. Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer[J]. Chin. Phys. Lett., 2008, 25(5): 1460-1463
[4] SUN Liang. Essence of Inviscid Shear Instability: a Point View of Vortex Dynamics[J]. Chin. Phys. Lett., 2008, 25(4): 1460-1463
[5] REN Ling, CHEN Jian-Guo, ZHU Ke-Qin. Dual Role of Wall Slip on Linear Stability of Plane Poiseuille Flow[J]. Chin. Phys. Lett., 2008, 25(2): 1460-1463
[6] ZHANG Tian-Tian, JIA Li, WANG Zhi-Cheng. Analytic Solution for Steady Slip Flow between Parallel Plates with Micro-Scale Spacing[J]. Chin. Phys. Lett., 2008, 25(1): 1460-1463
[7] CHEN Jian-Guo, REN Ling, FU Song. Linear Stability of Taylor-Couette Flows with Axial Heat Buoyancy[J]. Chin. Phys. Lett., 2006, 23(8): 1460-1463
[8] LU Tao, AN Yu. Effect of Physical Parameters on Shape Instability of Sonoluminescing Bubbles[J]. Chin. Phys. Lett., 2006, 23(4): 1460-1463
[9] MA Dong-Jun, SUN De-Jun, YIN Xie-Yuan. A Global Stability Analysis of the Wake behind a Rotating Circular Cylinder[J]. Chin. Phys. Lett., 2005, 22(8): 1460-1463
[10] ZHOU Ai-Ping, LI Xiao-Qing. Magnetic Instability in Accretion Discs with Anomalous Viscosity[J]. Chin. Phys. Lett., 2004, 21(3): 1460-1463
[11] TANG Ze-Mei, HU Wen-Rui. Influence of Aspect Ratio on the Onset of Thermocapillary Oscillatory Convection in a Floating Half Zone of Large Prandtl Number Fluid[J]. Chin. Phys. Lett., 2003, 20(4): 1460-1463
[12] LI Liang-Liang, AN Yu, YING Chong-Fu. Experimental Parameters and the Stability of Sonoluminescing Bubbles[J]. Chin. Phys. Lett., 2001, 18(11): 1460-1463
[13] CHEN Qi-sheng, HU Wen-rui. Instability from Steady and Axisymmetric to Steady and Asymmetric Floating Half Zone Convection in a Fat Liquid Bridge of Larger Prandtl Number[J]. Chin. Phys. Lett., 1999, 16(11): 1460-1463
Viewed
Full text


Abstract