Chin. Phys. Lett.  2005, Vol. 22 Issue (6): 1339-1343    DOI:
Original Articles |
Different Types of Solitary Wave Scattering in the Fermi--Pasta--Ulam Model
WEN Zhen-Ying1;ZHAO Hong2
1Department of Physics, Lanzhou University, Lanzhou 730000 2Department of Physics, Xiamen University, Xiamen 361005
Cite this article:   
WEN Zhen-Ying, ZHAO Hong 2005 Chin. Phys. Lett. 22 1339-1343
Download: PDF(276KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We show that the scattering between two solitary waves in the Fermi--Pasta--Ulam model with interaction potential V(x)=αx2/2+x4/4 can be classified into four types according to the configurations of the solitary waves. For three of the four types, the large solitary wave can lose energy and the small one can gain in average by collision. For the other one type in a special parameter region we encounter an anomalous scattering, i.e. the large solitary wave gains energy and the small one loses energy. Numerical investigations are performed for the anharmonic limit case of α=0 and the general case of α≠0 and comparisons between them are made.
Keywords: 05.45.Yv      63.20.Ry      63.20.Pw     
Published: 01 June 2005
PACS:  05.45.Yv (Solitons)  
  63.20.Ry (Anharmonic lattice modes)  
  63.20.Pw (Localized modes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I6/01339
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WEN Zhen-Ying
ZHAO Hong
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 1339-1343
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 1339-1343
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 1339-1343
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 1339-1343
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 1339-1343
[6] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 1339-1343
[7] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 1339-1343
[8] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 1339-1343
[9] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1339-1343
[10] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1339-1343
[11] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1339-1343
[12] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 1339-1343
[13] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 1339-1343
[14] WU Jian-Ping** . A New Wronskian Condition for a (3+1)-Dimensional Nonlinear Evolution Equation[J]. Chin. Phys. Lett., 2011, 28(5): 1339-1343
[15] XIN Xiang-Peng, LIU Xi-Qiang, ZHANG Lin-Lin . Symmetry Reduction, Exact Solutions and Conservation Laws of the Modified Kadomtzev–Patvishvili-II Equation[J]. Chin. Phys. Lett., 2011, 28(2): 1339-1343
Viewed
Full text


Abstract