Chin. Phys. Lett.  2005, Vol. 22 Issue (6): 1303-1304    DOI:
Original Articles |
Kepler Problem in Lagrangian Formulation Discussed from Topological Viewpoint
XU Gong-Ou1,2;XU Ming-Jie3
1Department of Physics, Nanjing University, Nanjing 210093 2Centre of Theoretical Nuclear Physics, National Laboratory of Heavy-Ion Accelerator, Lanzhou 730000 3Department of Earth Science, Nanjing University, Nanjing 210093
Cite this article:   
XU Gong-Ou, XU Ming-Jie 2005 Chin. Phys. Lett. 22 1303-1304
Download: PDF(166KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Kepler problem in Lagrangian formulation is discussed from the topological viewpoint. Essential points are analysed. Along the same line of thoughts, it is possible to study the Kepler problem in Hamiltonian formulation as well as in quantum mechanics from the topological viewpoint for showing quantum--classical correspondence.
Keywords: 02.40.Yv      45.20.Jj      45.50.Pk     
Published: 01 June 2005
PACS:  02.40.Yv  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  45.50.Pk (Celestial mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I6/01303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Gong-Ou
XU Ming-Jie
Related articles from Frontiers Journals
[1] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 1303-1304
[2] XU Wei, YUAN Bo, AO Ping, ** . Construction of Lyapunov Function for Dissipative Gyroscopic System[J]. Chin. Phys. Lett., 2011, 28(5): 1303-1304
[3] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 1303-1304
[4] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 1303-1304
[5] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 1303-1304
[6] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 1303-1304
[7] XIA Li-Li, CAI Jian-Le. Symmetry of Lagrangians of Nonholonomic Controllable Mechanical Systems[J]. Chin. Phys. Lett., 2010, 27(8): 1303-1304
[8] TIAN Jing, QIU Hai-Bo, CHEN Yong,. Nonlocal Measure Synchronization in Coupled Bosonic Josephson Junctions[J]. Chin. Phys. Lett., 2010, 27(7): 1303-1304
[9] ZHENG Shi-Wang, XIE Jia-Fang, WANG Jian-Bo, CHEN Xiang-Wei. Another Conserved Quantity by Mei Symmetry of Tzénoff Equation for Non-Holonomic Systems[J]. Chin. Phys. Lett., 2010, 27(3): 1303-1304
[10] XIE Yin-Li, JIA Li-Qun. Special Lie–Mei Symmetry and Conserved Quantities of Appell Equations Expressed by Appell Fun[J]. Chin. Phys. Lett., 2010, 27(12): 1303-1304
[11] XUE Yun, SHANG Hui-Lin. Jourdain Principle of a Super-Thin Elastic Rod Dynamics[J]. Chin. Phys. Lett., 2009, 26(7): 1303-1304
[12] XIE Guang-Xi, CUI Jin-Chao, ZHANG Yao-Yu, JIA Li-Qun. Structural Equation and Mei Conserved Quantity of Mei Symmetry for Appell Equations with Redundant Coordinates[J]. Chin. Phys. Lett., 2009, 26(7): 1303-1304
[13] PANG Ting, FANG Jian-Hui, ZHANG Ming-Jiang, LIN Peng, LU Kai. Perturbation to Mei Symmetry and Generalized Mei Adiabatic Invariants for Nonholonomic Systems in Terms of Quasi-Coordinates[J]. Chin. Phys. Lett., 2009, 26(7): 1303-1304
[14] WANG Peng, FANG Jian-Hui, WANG Xian-Ming. Discussion on Perturbation to Weak Noether Symmetry and Adiabatic Invariants for Lagrange Systems[J]. Chin. Phys. Lett., 2009, 26(3): 1303-1304
[15] JIA Li-Qun, CUI Jin-Chao, LUO Shao-Kai, YANG Xin-Fang. Special Lie Symmetry and Hojman Conserved Quantity of Appell Equations for a Holonomic System[J]. Chin. Phys. Lett., 2009, 26(3): 1303-1304
Viewed
Full text


Abstract