Chin. Phys. Lett.  2005, Vol. 22 Issue (4): 820-823    DOI:
Original Articles |
Scalar Field at the Phase Transition Point of RNdS Space
GUO Guang-Hai;GUI Yuan-Xing;TIAN Jian-Xiang
Department of Physics, Dalian University of Technology, Dalian 116024
Cite this article:   
GUO Guang-Hai, GUI Yuan-Xing, TIAN Jian-Xiang 2005 Chin. Phys. Lett. 22 820-823
Download: PDF(264KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The real scalar field equation between the outer black hole horizon and the cosmological horizon is solved in the Reissner--Nordström--de Sitter space when it is at the phase transition point. We use an accurate approximation, the polynomial approximation, to approximate the tortoise coordinate x(r) for obtaining the inverse function r=r(x) and then for solving the wave equation. The case where the two horizons are very close to each other is discussed in detail. It is found that the wave function is characteristically similar to the harmonic in the whole range with x as the independent coordinate, while the waves pile up near the horizons with r as the independent coordinate. Furthermore, we find that the height of the potential increases as the cosmological constant Λ decreases.
Keywords: 04.70.Bw      02.60.Cb     
Published: 01 April 2005
PACS:  04.70.Bw (Classical black holes)  
  02.60.Cb (Numerical simulation; solution of equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I4/0820
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Guang-Hai
GUI Yuan-Xing
TIAN Jian-Xiang
Related articles from Frontiers Journals
[1] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 820-823
[2] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 820-823
[3] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 820-823
[4] LI Zhi-Ming, JIANG Hai-Ying, HAN Yan-Bin, LI Jin-Ping, YIN Jian-Qin, ZHANG Jin-Cheng. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor[J]. Chin. Phys. Lett., 2012, 29(3): 820-823
[5] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 820-823
[6] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 820-823
[7] LIU Yan, JING Ji-Liang**. Propagation and Evolution of a Scalar Field in Einstein–Power–Maxwell Spacetime[J]. Chin. Phys. Lett., 2012, 29(1): 820-823
[8] M Sharif**, G Abbas . Phantom Accretion onto the Schwarzschild de-Sitter Black Hole[J]. Chin. Phys. Lett., 2011, 28(9): 820-823
[9] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 820-823
[10] LV Zhong-Quan, XUE Mei, WANG Yu-Shun, ** . A New Multi-Symplectic Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 820-823
[11] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 820-823
[12] DONG He-Fei, HONG Tao**, ZHANG De-Liang . Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media[J]. Chin. Phys. Lett., 2011, 28(3): 820-823
[13] R. Mokhtari**, A. Samadi Toodar, N. G. Chegini . Numerical Simulation of Coupled Nonlinear Schrödinger Equations Using the Generalized Differential Quadrature Method[J]. Chin. Phys. Lett., 2011, 28(2): 820-823
[14] SHEN Hua, LIU Kai-Xin, **, ZHANG De-Liang . Three-Dimensional Simulation of Detonation Propagation in a Rectangular Duct by an Improved CE/SE Scheme[J]. Chin. Phys. Lett., 2011, 28(12): 820-823
[15] XIONG Tao, ZHANG Peng**, WONG S. C., SHU Chi-Wang, ZHANG Meng-Ping . A Macroscopic Approach to the Lane Formation Phenomenon in Pedestrian Counterflow[J]. Chin. Phys. Lett., 2011, 28(10): 820-823
Viewed
Full text


Abstract