Chin. Phys. Lett.  2005, Vol. 22 Issue (12): 3115-3118    DOI:
Original Articles |
Relative Scaling Exponents and Intermittency in Compressible Turbulent Channel Flows
HU Kai-Heng1,2;CHEN Kai1
1State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Engineering Science, Peking University, Beijing 100871 2Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041
Cite this article:   
HU Kai-Heng, CHEN Kai 2005 Chin. Phys. Lett. 22 3115-3118
Download: PDF(254KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The relative scaling exponents and intermittency of three-dimensional compressible turbulent channel flow are investigated by using direct numerical simulation. One case is subsonic flow (Ma = 0.8), the other is supersonic (Ma= 1.3), and the Reynolds numbers based on the mean bulk velocity and channel half-width are 2826 and 3010, respectively. The analysis of the local slopes of sixth order velocity structure function to third order reveals that there is a well-defined scaling range for 10 < y+ < 100. It is also noted that the intermittency of longitudinal velocity increments in this region is stronger than that of the transverse ones. Comparison with the incompressible case shows that the location of the most intensive intermittency moves toward the log-law region, which is related to the displacement of streamwise vortical structures in the near-wall region.
Keywords: 47.60.+i      47.27.-i      47.27.Eq      47.27.Nz      47.55.-t     
Published: 01 December 2005
PACS:  47.60.+i  
  47.27.-i (Turbulent flows)  
  47.27.Eq  
  47.27.Nz  
  47.55.-t (Multiphase and stratified flows)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I12/03115
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU Kai-Heng
CHEN Kai
Related articles from Frontiers Journals
[1] ZHANG Hui-Qiang, LU Hao, WANG Bing**, WANG Xi-Lin . Experimental Investigation of Flow Drag and Turbulence Intensity of a Channel Flow with Rough Walls[J]. Chin. Phys. Lett., 2011, 28(8): 3115-3118
[2] LUO Jian-Ping, LU Zhi-Ming, USHIJIMA Tatsuo, KITOH Osami, LIU Yu-Lu,. Lagrangian Structure Function's Scaling Exponents in Turbulent Channel Flow[J]. Chin. Phys. Lett., 2010, 27(2): 3115-3118
[3] MI Jian-Chun, R. A. Antonia. Key Factors in Determining the Magnitude of Vorticity in Turbulent Plane Wakes[J]. Chin. Phys. Lett., 2010, 27(2): 3115-3118
[4] JIANG Mi, MA Ping. Vortex Turbulence due to the Interplay of Filament Tension and Rotational Anisotropy[J]. Chin. Phys. Lett., 2009, 26(7): 3115-3118
[5] CAO Yu-Hui, PEI Jie, CHEN Jun, SHE Zhen-Su,. Compressibility Effects in Turbulent Boundary Layers[J]. Chin. Phys. Lett., 2008, 25(9): 3115-3118
[6] HAN Jian, JIANG Nan .. Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer[J]. Chin. Phys. Lett., 2008, 25(5): 3115-3118
[7] FENG Shi-De, DONG Ping, ZHONG Lin-Hao. A Conceptual Model of Somali Jet Based on the Biot--Savart Law[J]. Chin. Phys. Lett., 2008, 25(12): 3115-3118
[8] SONG Fu-Quan, JIANG Ren-Jie, BIAN Shu-Li. Measurement of Threshold Pressure Gradient of Microchannels by Static Method[J]. Chin. Phys. Lett., 2007, 24(7): 3115-3118
[9] KU Xiao-Ke, LIN Jian-Zhong,. Orientational Distribution of Fibres in Sheared Fibre Suspensions[J]. Chin. Phys. Lett., 2007, 24(6): 3115-3118
[10] XU Jing-Lei, MA Hui-Yang. Supersonic Turbulent Boundary Layer: DNS and RANS[J]. Chin. Phys. Lett., 2007, 24(3): 3115-3118
[11] TENG Hong-Hui, JIANG Zong-Lin. Analytical Interaction of the Acoustic Wave and Turbulent Flame[J]. Chin. Phys. Lett., 2007, 24(2): 3115-3118
[12] LI Xin-Liang, FU De-Xun, MA Yan-Wen. Direct Numerical Simulation of a Spatially Evolving Supersonic Turbulent Boundary Layer at Ma=6[J]. Chin. Phys. Lett., 2006, 23(6): 3115-3118
[13] LI Xiu-Han, YU Xiao-Mei, ZHANG Da-Cheng, CUI Hai-Hang, LI Ting, WANG Ying, WANG Yang-Yuan. Characteristics of Gas Flow within a Micro Diffuser/Nozzle Pump[J]. Chin. Phys. Lett., 2006, 23(5): 3115-3118
[14] JIANG Ren-Jie, SONG Fu-Quan, LI Hua-Mei. Flow Characteristics of Deionized Water in Microtubes[J]. Chin. Phys. Lett., 2006, 23(12): 3115-3118
[15] JIANG Nan, ZHANG Jin. Detecting Multi-Scale Coherent Eddy Structures and Intermittency in Turbulent Boundary Layer by Wavelet Analysis[J]. Chin. Phys. Lett., 2005, 22(8): 3115-3118
Viewed
Full text


Abstract