Chin. Phys. Lett.  2005, Vol. 22 Issue (12): 2994-2996    DOI:
Original Articles |
Exact Solutions of the Klein--Gordon Equation with a New Anharmonic Oscillator Potential
ZHANG Min-Cang;WANG Zhen-Bang
School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062
Cite this article:   
ZHANG Min-Cang, WANG Zhen-Bang 2005 Chin. Phys. Lett. 22 2994-2996
Download: PDF(181KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We solve the Klein--Gordon equation with a new anharmonic oscillator potential and present the exact solutions. It is shown that under the condition of equal scalar and vector potentials, the Klein--Gordon equation could be separated into an angular equation and a radial equation. The angular solutions are the associated-Legendre polynomial and the radial solutions are expressed in terms of the confluent hypergeometric functions. Finally, the energy equation is obtained from the boundary condition satisfied by the radial wavefunctions.
Keywords: 03.65.Pm      03.65.-w     
Published: 01 December 2005
PACS:  03.65.Pm (Relativistic wave equations)  
  03.65.-w (Quantum mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I12/02994
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Min-Cang
WANG Zhen-Bang
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 2994-2996
[2] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 2994-2996
[3] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 2994-2996
[4] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 2994-2996
[5] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 2994-2996
[6] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 2994-2996
[7] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 2994-2996
[8] HUANG Zeng-Guang**, FANG Wei, , LU Hui-Qing, . Inflation and Singularity of a Bianchi Type-VII0 Universe with a Dirac Field in the Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(8): 2994-2996
[9] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 2994-2996
[10] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 2994-2996
[11] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 2994-2996
[12] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 2994-2996
[13] WANG Zhen, WANG He-Ping, WANG Zhi-Xi**, FEI Shao-Ming . Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices[J]. Chin. Phys. Lett., 2011, 28(2): 2994-2996
[14] HUANG Zeng-Guang**, FANG Wei, LU Hui-Qing, ** . Inflation and Singularity in Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(2): 2994-2996
[15] RONG Shu-Jun**, LIU Qiu-Yu . Flavor State of the Neutrino: Conditions for a Consistent Definition[J]. Chin. Phys. Lett., 2011, 28(12): 2994-2996
Viewed
Full text


Abstract