Chin. Phys. Lett.  2005, Vol. 22 Issue (10): 2504-2507    DOI:
Original Articles |
Small-Signal Analysis of Performance Characterization of Chaotic Masking Decoding in Injected Semiconductor Lasers
YAN Sen-Lin1,2
1Department of Physics, Nanjing Xiaozhuang College, Nanjing 210017 2School of Communication and Electronic Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013
Cite this article:   
YAN Sen-Lin 2005 Chin. Phys. Lett. 22 2504-2507
Download: PDF(236KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Performance characterization of chaotic masking encoding and decoding is studied in synchronization injected semiconductor lasers under condition of injected-feedback. The modulation response function of chaotic masking encoding and its response factor are theoretically deduced and analysed by small-signal analysis. It is numerically demonstrated that there are peak values between 1.52GHz and 3.18GHz when the injection coefficient is between 0.2 and 0.8. The chaotic synchronization error equation is theoretically deduced and its root is given by small-signal analysis under condition of chaotic masking encoding. The chaotic decoding formula is also theoretically demonstrated. There are the least dale values of synchronization errors between the modulation frequencies of 0.79GHz and 1.91GHz when the injection coefficient is between 0.1 and 0.8 in numerical simulation. The numerical result is well consistent with the theoretical demonstration.
Keywords: 05.45.Vx      05.45.Pq     
Published: 01 October 2005
PACS:  05.45.Vx (Communication using chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I10/02504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAN Sen-Lin
Related articles from Frontiers Journals
[1] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 2504-2507
[2] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 2504-2507
[3] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 2504-2507
[4] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 2504-2507
[5] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 2504-2507
[6] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 2504-2507
[7] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 2504-2507
[8] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 2504-2507
[9] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 2504-2507
[10] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 2504-2507
[11] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 2504-2507
[12] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 2504-2507
[13] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 2504-2507
[14] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 2504-2507
[15] Eduardo L. Brugnago**, Paulo C. Rech. Chaos Suppression in a Sine Square Map through Nonlinear Coupling[J]. Chin. Phys. Lett., 2011, 28(11): 2504-2507
Viewed
Full text


Abstract