Chin. Phys. Lett.  2005, Vol. 22 Issue (1): 230-232    DOI:
Original Articles |
Modified Photoluminescence by Silicon-Based One-Dimensional Photonic Crystal Microcavities
CHEN San;QIAN Bo;WEI Jun-Wei;CHEN Kun-Ji;XU Jun;LI Wei;HUANG Xin-Fan
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093
Cite this article:   
CHEN San, QIAN Bo, WEI Jun-Wei et al  2005 Chin. Phys. Lett. 22 230-232
Download: PDF(300KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Photoluminescence (PL) from one-dimensional photonic band structures is investigated. The doped photonic crystal with microcavities are fabricated by using alternating hydrogenated amorphous silicon nitride (a-SiNx:H/a-SiNy:H) layers in a plasma enhanced chemical vapour deposition (PECVD) chamber. It is observed that microcavities strongly modify the PL spectra from active hydrogenated amorphous silicon nitride (a-SiNz:H) thin film. By comparison, the wide emission band width 208nm is strongly narrowed to 11\,nm, and the resonant enhancement of the peak PL intensity is about two orders of magnitude with respect to the emission of the λ/2-thick layer of a-SiNz:H. A linewidth of Δλ=11nm and a quality factor of Q=69 are achieved in our one-dimensional a-SiNz photonic crystal microcavities. Measurements of transmittance spectra of the as-grown samples show that the transmittance resonant peak of a cavity mode at 710nm is introduced into the band gap of one-dimensional photonic crystal distributed Bragg reflector (DBR), which further verifies the microcavity effects.
Keywords: 78.55.-m 42.70.Qs      42.55.Sa     
Published: 01 January 2005
PACS:  78.55.-m 42.70.Qs  
  42.55.Sa (Microcavity and microdisk lasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I1/0230
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN San
QIAN Bo
WEI Jun-Wei
CHEN Kun-Ji
XU Jun
LI Wei
HUANG Xin-Fan
Related articles from Frontiers Journals
[1] WANG Shi-Jiang, HUANG Yong-Zhen, YANG Yue-De, HU Yong-Hong, XIAO Jin-Long, DU Yun. Output Characteristics of an InP/InGaAsP Triangle Microcavity Laser[J]. Chin. Phys. Lett., 2010, 27(1): 230-232
[2] ZHOU Chang-Zhu, XIONG Zhi-Gang, LI Zhi-Yuan. High-Q Microcavity in Two-Dimensional Diamond Photonic Crystal Thin Films Realized via a Mode Gap[J]. Chin. Phys. Lett., 2009, 26(9): 230-232
[3] CHEN Wei, XING Ming-Xin, ZHOU Wen-Jun, LIU An-Jin, ZHENG Wan-Hua. High Polarization Single Mode Photonic Crystal Microlaser[J]. Chin. Phys. Lett., 2009, 26(8): 230-232
[4] ZHANG Xian-Gao, CHEN Kun-Ji, QIAN Bo, CHEN San, DING Hong-Lin, LIUKui, WANG Xiang, XU Jun, LI Wei, HUANG Xin-Fan. Eigenmode Splitting in all Hydrogenated Amorphous Silicon Nitride Coupled Microcavity[J]. Chin. Phys. Lett., 2008, 25(5): 230-232
[5] CHEN Qin, HUANG Yong-Zhen. WG-Like Modes Selectivity in a Square Cavity with Posts[J]. Chin. Phys. Lett., 2006, 23(6): 230-232
[6] SONG Feng, WU Zhao-Hui, LIU Shu-Jing, CAI Hong, TIAN Jian-Guo, ZHANG Guang-Yin, Boris Denker, Sergei Sverchkov. A Passive Q-Switched Microchip Er/Yb Glass Laser Pumped by Laser Diode[J]. Chin. Phys. Lett., 2006, 23(5): 230-232
[7] QIAN Bo, CHEN San, CEN Zhan-Hong, CHEN Kun-Ji, LIU Yan-Song, XU Jun, MA Zhong-Yuan, LI Wei, HUANG Xin-Fan. Step-by-Step Laser Crystallization of Amorphous Si:H/SiNx:H Multilayer for Active Layer in Microcavities[J]. Chin. Phys. Lett., 2006, 23(5): 230-232
[8] WANG Gang, LUO Bin, PAN Wei, XIONG Jie. A Transfer Matrix-Based Analysis of Vertical-Cavity Semiconductor Optical Amplifiers[J]. Chin. Phys. Lett., 2005, 22(10): 230-232
[9] HUANG Zhan-Chao, WU Hui-Zhen. Design of Synthesized DBRs for Long-Wavelength InP-Based Vertical-Cavity Surface-Emitting Lasers[J]. Chin. Phys. Lett., 2004, 21(2): 230-232
[10] WAN Xin-Jun, ZHANG Shu-Lian, LIU Gang, FEI Li-Gang. Self-Mixing Interference in Dual-Polarization Microchip Nd:YAG Lasers[J]. Chin. Phys. Lett., 2004, 21(11): 230-232
[11] GUO Wei-Hua, HUANG Yong-Zhen, LU Qiao-Yin, YU Li-Juan. Comparison of Free Spectral Range and Quality Factor for Two-Dimensional Square and Circular Microcavities[J]. Chin. Phys. Lett., 2004, 21(1): 230-232
[12] HUANG Yong-Zhen, GUO Wei-Hua, YU Li-Juan. Analysis of Mode Quality Factors for Equilateral Triangle Semiconductor Microlasers with Rough Sidewalls[J]. Chin. Phys. Lett., 2002, 19(5): 230-232
[13] PU Xiao-Yun, XIA Yun-Jie, LEE Wing-Kee. Reduction of Lasing Threshold by Deforming a Circular Resonator[J]. Chin. Phys. Lett., 2002, 19(4): 230-232
[14] LI De-Hua, WANG Ling, GAO Chun-Qing, ZHANG Zhi-Guo, FENG Bao-Hua, Volker Gaebler, LIU Bai-Ning, H. J. Eichler, ZHANG Shi-Wen, LIU An-Han, SHEN De-Zhong. Intracavity-Doubled Self-Q-Switched Nd,Cr:YAG 946/473 nm Microchip Laser [J]. Chin. Phys. Lett., 2002, 19(4): 230-232
[15] JIA Rui, JIANG De-Sheng, TAN Ping-Heng, SUN Bao-Quan, ZHANG Jing-Bo, LIN Yuan. Photoluminescence Study of CdSexS1-x Quantum Dots in a Glass Spherical Microcavity[J]. Chin. Phys. Lett., 2001, 18(10): 230-232
Viewed
Full text


Abstract