Chin. Phys. Lett.  2005, Vol. 22 Issue (1): 158-160    DOI:
Original Articles |
Fractal Character for Tortuous Streamtubes in Porous Media
YU Bo-Ming
Department of Physics and the State Key Laboratory of Plastic Forming and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
YU Bo-Ming 2005 Chin. Phys. Lett. 22 158-160
Download: PDF(331KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An analytical model for fractal dimension of tortuous streamtubes in porous media is derived. The proposed fractal dimension for tortuous streamtubes in porous media is expressed as a function of porosity and scale, and there is no empirical constant in the proposed expression. The model predictions for the fractal dimension of tortuous streamtubes in porous media are in good agreement with those by the box-counting method and with the observations of other researchers.
Keywords: 47.55.Mh      47.15.-x      05.45.Df     
Published: 01 January 2005
PACS:  47.55.Mh  
  47.15.-x (Laminar flows)  
  05.45.Df (Fractals)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I1/0158
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Bo-Ming
Related articles from Frontiers Journals
[1] YUN Mei-Juan, ZHENG Wei. Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media[J]. Chin. Phys. Lett., 2012, 29(6): 158-160
[2] WU Guo-Cheng, WU Kai-Teng. Variational Approach for Fractional Diffusion-Wave Equations on Cantor Sets[J]. Chin. Phys. Lett., 2012, 29(6): 158-160
[3] T. Hayat, M. Mustafa**, S. Obaidat . Simultaneous Effects of MHD and Thermal Radiation on the Mixed Convection Stagnation-Point Flow of a Power-Law Fluid[J]. Chin. Phys. Lett., 2011, 28(7): 158-160
[4] LI Jian-Hua, YU Bo-Ming** . Tortuosity of Flow Paths through a Sierpinski Carpet[J]. Chin. Phys. Lett., 2011, 28(3): 158-160
[5] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 158-160
[6] ZHOU Yong-Zhi, LI Mei, GENG Hao-Ran**, YANG Zhong-Xi, SUN Chun-Jing . Hurst's Exponent Determination for Radial Distribution Functions of In, Sn and In-40 wt%Sn Melt[J]. Chin. Phys. Lett., 2011, 28(12): 158-160
[7] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 158-160
[8] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 158-160
[9] A. M. Salem. Temperature-Dependent Viscosity Effects on Non-Darcy Hydrodynamic Free Convection Heat Transfer from a Vertical Wedge in Porous Media[J]. Chin. Phys. Lett., 2010, 27(6): 158-160
[10] CAI Jian-Chao, YU Bo-Ming, MEI Mao-Fei, LUO Liang. Capillary Rise in a Single Tortuous Capillary[J]. Chin. Phys. Lett., 2010, 27(5): 158-160
[11] DONG Xi-Jie, HU Yi-Fan, WU Yu-Ying, ZHAO Jun, WAN Zhen-Zhu. A Fractal Model for Effective Thermal Conductivity of Isotropic Porous Silica Low-k Materials[J]. Chin. Phys. Lett., 2010, 27(4): 158-160
[12] CAI Jian-Chao, YU Bo-Ming, ZOU Ming-Qing, MEI Mao-Fei. Fractal Analysis of Surface Roughness of Particles in Porous Media[J]. Chin. Phys. Lett., 2010, 27(2): 158-160
[13] YUN Mei-Juan, YUE Yin, YU Bo-Ming, LU Jian-Duo, ZHENG Wei . A Geometrical Model for Tortuosity of Tortuous Streamlines in Porous Media with Cylindrical Particles[J]. Chin. Phys. Lett., 2010, 27(10): 158-160
[14] GUO Long, CAI Xu. The Fractal Dimensions of Complex Networks[J]. Chin. Phys. Lett., 2009, 26(8): 158-160
[15] WU Jin-Sui, YIN Shang-Xian, ZHAO Dong-Yu. A Particle Resistance Model for Flow through Porous Media[J]. Chin. Phys. Lett., 2009, 26(6): 158-160
Viewed
Full text


Abstract