Chin. Phys. Lett.  2005, Vol. 22 Issue (1): 1-4    DOI:
Original Articles |
Searching for Infinitely Many Symmetries and Exact Solutions via Repeated Similarity Reductions
LOU Sen-Yue1,2;LAIN Zeng-Ju1
1Department of Physics, Ningbo University, Ningbo 315211 2Department of Physics, Shanghai Jiao Tong University, Shanghai 200030
Cite this article:   
LOU Sen-Yue, LAIN Zeng-Ju 2005 Chin. Phys. Lett. 22 1-4
Download: PDF(210KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A simple symmetry reduction procedure is repeatedly used to obtain infinitely many symmetries and then the exact solutions of the Burgers equation. Some sets of exact solutions such as the rational solutions, rational-kink solutions and error function solutions are explicitly given. As a byproduct the recursion operators can be re-obtained at the same time.

Keywords: 02.30.Ik      02.20.Tw      02.30.Jr     
Published: 01 January 2005
PACS:  02.30.Ik (Integrable systems)  
  02.20.Tw (Infinite-dimensional Lie groups)  
  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I1/01
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LOU Sen-Yue
LAIN Zeng-Ju
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 1-4
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 1-4
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 1-4
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 1-4
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 1-4
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 1-4
[7] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 1-4
[8] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 1-4
[9] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 1-4
[10] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 1-4
[11] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 1-4
[12] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 1-4
[13] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 1-4
[14] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 1-4
[15] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1-4
Viewed
Full text


Abstract