Chin. Phys. Lett.  2004, Vol. 21 Issue (9): 1685-1688    DOI:
Original Articles |
Exact Treatment of l ≠ 0 States
B. Gönül
Department of Engineering Physics, Faculty of Engineering, University of Gaziantep, 27310 Gaziantep-Tü rkiye
Cite this article:   
B. Gö, nül 2004 Chin. Phys. Lett. 21 1685-1688
Download: PDF(165KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the basic ingredient of supersymmetry, we present a general procedure for the treatment of quantum states having nonzero angular momenta.
Keywords: 03.65.Ca      03.65.Ge      11.30.Na     
Published: 01 September 2004
PACS:  03.65.Ca (Formalism)  
  03.65.Ge (Solutions of wave equations: bound states)  
  11.30.Na (Nonlinear and dynamical symmetries (spectrum-generating symmetries))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2004/V21/I9/01685
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
B. Gö
nül
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 1685-1688
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 1685-1688
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 1685-1688
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 1685-1688
[5] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 1685-1688
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 1685-1688
[7] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 1685-1688
[8] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 1685-1688
[9] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 1685-1688
[10] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 1685-1688
[11] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 1685-1688
[12] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 1685-1688
[13] KE San-Min, **, LI Xin-Ying, WANG Chun, YUE Rui-Hong . Classical Exchange Algebra of the Nonlinear Sigma Model on a Supercoset Target with 2n Grading[J]. Chin. Phys. Lett., 2011, 28(10): 1685-1688
[14] Altu&#, , Arda, Ramazan Sever. Effective Mass Schrödinger Equation via Point Canonical Transformation[J]. Chin. Phys. Lett., 2010, 27(7): 1685-1688
[15] FAN Hong-Yi, CHEN Jun-Hua, WANG Tong-Tong. Squeezing-Displacement Dynamics for One-Dimensional Potential Well with Two Mobile Walls where Wavefunctions Vanish[J]. Chin. Phys. Lett., 2010, 27(5): 1685-1688
Viewed
Full text


Abstract