Chin. Phys. Lett.  2004, Vol. 21 Issue (2): 227-229    DOI:
Original Articles |
Stabilizing Unstable Equilibrium Point of Unified Chaotic Systems with Unknown Parameter Using Sliding Mode Control
GUAN Xin-Ping;HE Yan-Hui
Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004
Cite this article:   
GUAN Xin-Ping, HE Yan-Hui 2004 Chin. Phys. Lett. 21 227-229
Download: PDF(390KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The control problem of a unified chaos is considered. Stabilizing unstable equilibrium point is achieved by a sliding mode controller based on parameter identification. The observer is applied to identify the unknown parameter of a unified chaotic system. Simulations are made and the results verify the validity of the proposed method.
Keywords: 02.30.Yy      05.45.Gg      05.45.Ac     
Published: 01 February 2004
PACS:  02.30.Yy (Control theory)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Ac (Low-dimensional chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2004/V21/I2/0227
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUAN Xin-Ping
HE Yan-Hui
Related articles from Frontiers Journals
[1] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 227-229
[2] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 227-229
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 227-229
[4] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 227-229
[5] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 227-229
[6] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 227-229
[7] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 227-229
[8] CAO Qing-Jie, **, HAN Ning, TIAN Rui-Lan . A Rotating Pendulum Linked by an Oblique Spring[J]. Chin. Phys. Lett., 2011, 28(6): 227-229
[9] XU Wei, YUAN Bo, AO Ping, ** . Construction of Lyapunov Function for Dissipative Gyroscopic System[J]. Chin. Phys. Lett., 2011, 28(5): 227-229
[10] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 227-229
[11] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 227-229
[12] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 227-229
[13] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 227-229
[14] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 227-229
[15] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 227-229
Viewed
Full text


Abstract