Chin. Phys. Lett.  2004, Vol. 21 Issue (2): 223-226    DOI:
Original Articles |
Infinite-Parameter Potential Symmetries and a New Exact Solution for the Particle-Cluster Dynamic Equation
ZHANG Shan-Qing;LI Zhi-Bin
Department of Computer Science, East China Normal University, Shanghai 200062
Cite this article:   
ZHANG Shan-Qing, LI Zhi-Bin 2004 Chin. Phys. Lett. 21 223-226
Download: PDF(201KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The master equation of a one-dimensional lattice-gas model with order preservation where the occupation probabilities of sites corresponding to Bose statistics as a consequence of the prescribed dynamics is studied with the potential symmetry method. The infinite-parameter potential symmetry and a new exact solution are obtained. The result illustrates that there remains the possibility of the above nonlinear equation to a linear partial differential equation by a non-invertible mapping.

Keywords: 02.20.Tw      02.30.Jr      02.70.Wz      03.65.Ge     
Published: 01 February 2004
PACS:  02.20.Tw (Infinite-dimensional Lie groups)  
  02.30.Jr (Partial differential equations)  
  02.70.Wz (Symbolic computation (computer algebra))  
  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2004/V21/I2/0223
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Shan-Qing
LI Zhi-Bin
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 223-226
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 223-226
[3] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 223-226
[4] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 223-226
[5] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 223-226
[6] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 223-226
[7] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 223-226
[8] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 223-226
[9] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 223-226
[10] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 223-226
[11] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 223-226
[12] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 223-226
[13] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 223-226
[14] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 223-226
[15] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 223-226
Viewed
Full text


Abstract