Chin. Phys. Lett.  2004, Vol. 21 Issue (12): 2365-2368    DOI:
Original Articles |
Additive Temporal Coloured Noise Induced Eckhaus Instability in Complex Ginzburg--Landau Equation System
WANG Xin1;TIAN Xu1;WANG Hong-Li1,3;OUYANG Qi1,2,3;LI Hao2
1Department of Physics, Peking University, Beijing 100871 2Centre for Theoretical Biology, Peking University, Beijing 100871 3The Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (PKU), Peking University, Beijing 100871
Cite this article:   
WANG Xin, TIAN Xu, WANG Hong-Li et al  2004 Chin. Phys. Lett. 21 2365-2368
Download: PDF(405KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effect of additive coloured noises, which are correlated in time, on one-dimensional travelling waves in the complex Ginzburg--Landau equation is studied by numerical simulations. We found that a small coloured noise with temporal correlation could considerably influence the stability of one-dimensional wave trains. There exists an optimal temporal correlation of noise where travelling waves are the most vulnerable. To elucidate the phenomena, we statistically calculated the convective velocities Vg of the wave packets, and found that the coloured noise with an appropriate temporal correlation can decrease Vg, making the system convectively more unstable.
Keywords: 05.45.-a      05.40.-a      47.54.+r     
Published: 01 December 2004
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  47.54.+r  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2004/V21/I12/02365
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xin
TIAN Xu
WANG Hong-Li
OUYANG Qi
LI Hao
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 2365-2368
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 2365-2368
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 2365-2368
[4] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 2365-2368
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 2365-2368
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 2365-2368
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 2365-2368
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 2365-2368
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 2365-2368
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 2365-2368
[11] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 2365-2368
[12] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 2365-2368
[13] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 2365-2368
[14] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 2365-2368
[15] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 2365-2368
Viewed
Full text


Abstract