Chin. Phys. Lett.  2004, Vol. 21 Issue (11): 2089-2092    DOI:
Original Articles |
Derivation of Exact Eigenvalues and Eigenfunctions Based on the Analytical Transfer Matrix Method
HE Ying; CAO Zhuang-Qi;SHEN Qi-Shun
Department of Physics, Shanghai Jiao Tong University, Shanghai 200240
Cite this article:   
HE Ying, CAO Zhuang-Qi, SHEN Qi-Shun 2004 Chin. Phys. Lett. 21 2089-2092
Download: PDF(314KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We extend the analytical transfer matrix method (ATMM) to calculate both the energy eigenvalues and wavefunctions for the Morse potential and the regulated Coulomb potential. Derivations of the exact eigenenergies and eigenfunctions are presented in detail by the ATMM. We compare our results with that obtained by relaxational approach and the eigenvalue moment method, and it is shown that the ATMM can produce accurate eigenvalues. The eigenfunctions by the ATMM are also proven to be correct and meaningful.

Keywords: 03.65.Sq      03.65.Ge     
Published: 01 November 2004
PACS:  03.65.Sq (Semiclassical theories and applications)  
  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2004/V21/I11/02089
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HE Ying
CAO Zhuang-Qi
SHEN Qi-Shun
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 2089-2092
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 2089-2092
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 2089-2092
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 2089-2092
[5] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 2089-2092
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 2089-2092
[7] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 2089-2092
[8] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 2089-2092
[9] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 2089-2092
[10] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 2089-2092
[11] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 2089-2092
[12] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 2089-2092
[13] WANG De-Hua. Corrigendum: “Extracting Closed Classical Orbits from Quantum Recurrence Spectra of a Non-Hydrogenic Atom in Parallel Electric and Magnetic Fields”[J]. Chin. Phys. Lett., 2010, 27(8): 2089-2092
[14] Altu&#, , Arda, Ramazan Sever. Effective Mass Schrödinger Equation via Point Canonical Transformation[J]. Chin. Phys. Lett., 2010, 27(7): 2089-2092
[15] TIAN Gui-Hua, ZHONG Shu-Quan. Ground State Eigenfunction of Spheroidal Wave Functions[J]. Chin. Phys. Lett., 2010, 27(4): 2089-2092
Viewed
Full text


Abstract