Chin. Phys. Lett.  2004, Vol. 21 Issue (11): 2077-2080    DOI:
Original Articles |
Two-Component Wadati--Konno--Ichikawa Equation and Its Symmetry Reductions
QU Chang-Zheng1;YAO Ruo-Xia1,2;LI Zhi-Bin2
1Centre for Nonlinear Studies, Northwest University, Xi’an 710069 2Department of Computer Science, East China Normal University, Shanghai 200062
Cite this article:   
QU Chang-Zheng, YAO Ruo-Xia, LI Zhi-Bin 2004 Chin. Phys. Lett. 21 2077-2080
Download: PDF(216KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract It is shown that two-component Wadati--Konno--Ichikawa (WKI) equation, i.e.~a generalization of the well-known WKI equation, is obtained from the motion of space curves in Euclidean geometry, and it is exactly a system for the graph of the curves when the curve motion is governed by the two-component modified Korteweg--de Vries flow. Group-invariant solutions of the two-component WKI equation which corresponds to an optimal system of its Lie point symmetry groups are obtained, and its similarity reductions to systems of ordinary differential equations are also given.


Keywords: 02.40.-k      03.40.Kf      02.30.Jr      04.20.Jb     
Published: 01 November 2004
PACS:  02.40.-k (Geometry, differential geometry, and topology)  
  03.40.Kf  
  02.30.Jr (Partial differential equations)  
  04.20.Jb (Exact solutions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2004/V21/I11/02077
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QU Chang-Zheng
YAO Ruo-Xia
LI Zhi-Bin
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 2077-2080
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 2077-2080
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 2077-2080
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 2077-2080
[5] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 2077-2080
[6] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 2077-2080
[7] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 2077-2080
[8] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 2077-2080
[9] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 2077-2080
[10] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 2077-2080
[11] R. K. Tiwari**, D. Tiwari, Pratibha Shukla. LRS Bianchi Type-II Cosmological Model with a Decaying Lambda Term[J]. Chin. Phys. Lett., 2012, 29(1): 2077-2080
[12] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 2077-2080
[13] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 2077-2080
[14] R. K. Tiwari*, S. Sharma** . Bianchi Type-I String Cosmological Model with Bulk Viscosity and Time-Dependent Λ term[J]. Chin. Phys. Lett., 2011, 28(9): 2077-2080
[15] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 2077-2080
Viewed
Full text


Abstract