Chin. Phys. Lett.  2004, Vol. 21 Issue (10): 1884-1886    DOI:
Original Articles |
Dynamical Equation of Post Newtonian Quasi-rigid Body
XU Chong-Ming1;TAO Jin-He2;HUANG Tian-Yi3;WU Xue-Jun1
1Department of Physics, Nanjing Normal University, Nanjing 210097 2Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 3Department of Astronomy, Nanjing University, Nanjing 210093
Cite this article:   
XU Chong-Ming, TAO Jin-He, HUANG Tian-Yi et al  2004 Chin. Phys. Lett. 21 1884-1886
Download: PDF(210KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We derive the dynamical equation of a post Newtonian (PN) quasi-rigid body from the general rotational equation of motion, i.e. the PN rotational equation of motion for a quasi-rigid body. It is emphasized that a rotational angular velocity vector and a figure axis besides the first post Newtonian (1PN) spin vector can be defined and realized for the model of a PN quasi-rigid body model constructed recently. Actually, we have shown that the moment of inertia tensor of a quasi-rigid body can be transformed into a diagonal form by an orthogonal transformation, which defines the principal axes of inertia of the body. As an example, its torque-free motion is discussed and a PN Poinsot configuration, which is similar to the Newtonian one with a small 1PN correction, is solved.

Keywords: 04.25.Nx      91.10.Nj      95.10.Jk     
Published: 01 October 2004
PACS:  04.25.Nx (Post-Newtonian approximation; perturbation theory; related Approximations)  
  91.10.Nj (Rotational variations; polar wobble)  
  95.10.Jk (Astrometry and reference systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2004/V21/I10/01884
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Chong-Ming
TAO Jin-He
HUANG Tian-Yi
WU Xue-Jun
Related articles from Frontiers Journals
[1] WEI Xiao-Hong, QIAN Lie-Jia, LI Ke-Yu, ZHU He-Yuan, FAN Dian-Yuan. Stimulated Raman Scattering of a Modulated Laser Beam in Air: a Perturbation Approach[J]. Chin. Phys. Lett., 2006, 23(11): 1884-1886
[2] LIU Lin-Xia, SHAO Cheng-Gang, LUO Jun. Gravitational Faraday Rotation of the Earth and Its Possible Test[J]. Chin. Phys. Lett., 2005, 22(12): 1884-1886
[3] TIAN Gui-Hua. Integral Equations for the Spin-Weighted Spheroidal Wave unctions[J]. Chin. Phys. Lett., 2005, 22(12): 1884-1886
[4] XU Chong-Ming, WU Xue-Jun. Extending the First-Order Post-Newtonian Scheme in Multiple Systems to the Second-Order Contributions to Light Propagation[J]. Chin. Phys. Lett., 2003, 20(2): 1884-1886
[5] LI Xin-Zhou, ZHOU Bing-Lu, ZHU Jiong-Ming. Quasi-Normal Oscillations of a Black Hole with Deficit Angle for Electromagnetic Perturbations[J]. Chin. Phys. Lett., 2001, 18(4): 1884-1886
[6] YUAN Ning-Yi, LI Xin-Zhou. Complex Normal-mode Frequencies of External Perturbations in Generalized Schwarzschild Geometry[J]. Chin. Phys. Lett., 2000, 17(4): 1884-1886
[7] ZHAO Min-guang. Comment on “About the Energy of the Universe”[J]. Chin. Phys. Lett., 1997, 14(5): 1884-1886
[8] FENG Shi-xiang, DUAN Yi-shi. Reply to the Comment by ZHAO[J]. Chin. Phys. Lett., 1997, 14(5): 1884-1886
[9] FENG Shi-xiang, DUAN Yi-shi. About the Energy of the Universe[J]. Chin. Phys. Lett., 1996, 13(6): 1884-1886
Viewed
Full text


Abstract