Chin. Phys. Lett.  2003, Vol. 20 Issue (9): 1586-1588    DOI:
Original Articles |
Preliminary Monte Carlo Results for the Three-Dimensional Holstein Model
WU Yan-Li1;LIU Chuan1;LUO Qiang1,2
1School of Physics, Peking University, Beijing 100871 2State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871
Cite this article:   
WU Yan-Li, LIU Chuan, LUO Qiang 2003 Chin. Phys. Lett. 20 1586-1588
Download: PDF(284KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Monte Carlo simulations are used to study the three-dimensional Holstein model. The relationship between the band filling and the chemical potential is obtained for various phonon frequencies and temperatures. The energy of a single electron or a hole is also calculated as a function of the lattice momenta.

Keywords: 75.10.Jm      71.10.Fd      71.10.Li      74.20.Mn      74.72.-h     
Published: 01 September 2003
PACS:  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  71.10.Li (Excited states and pairing interactions in model systems)  
  74.20.Mn (Nonconventional mechanisms)  
  74.72.-h (Cuprate superconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2003/V20/I9/01586
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Yan-Li
LIU Chuan
LUO Qiang
Related articles from Frontiers Journals
[1] ZHOU Hai-Chun, YANG Guang, WANG Kai, LONG Hua, LU Pei-Xiang. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film[J]. Chin. Phys. Lett., 2012, 29(6): 1586-1588
[2] CHANG Hao-Ran**,WANG Jing-Rong,WANG Jing. Influence of Fermion Velocity Renormalization on Dynamical Mass Generation in QED3[J]. Chin. Phys. Lett., 2012, 29(5): 1586-1588
[3] ZHU Ren-Gui** . Frustrated Ferromagnetic Spin Chain near the Transition Point[J]. Chin. Phys. Lett., 2011, 28(9): 1586-1588
[4] Sudha, **, B. G. Divyamani, A. R. Usha Devi, . Loss of Exchange Symmetry in Multiqubit States under Ising Chain Evolution[J]. Chin. Phys. Lett., 2011, 28(2): 1586-1588
[5] Erhan Albayrak . Thermal Entanglement in a Two-Qutrit Spin-1 Anisotropic Heisenberg Model[J]. Chin. Phys. Lett., 2011, 28(2): 1586-1588
[6] CAI Jiang-Tao, ABLIZ Ahmad**, BAI Yan-Kui, JIN Guang-Sheng . Effects of Dzyaloshinskii–Moriya Interaction on Optimal Dense Coding Using a Two-Qubit Heisenberg XXZ Chain with and without External Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(2): 1586-1588
[7] Minoru SUZUKI, Kenji HAMADA, Ryota TAKEMURA, Masayuki OHMAKI, Itsuhiro KAKEYA. Overdoped High Current Density Bi2-xPbxSr2CaCu2O8+δ Intrinsic Josephson Junction Mesas and Their Switching Current Distributions[J]. Chin. Phys. Lett., 2010, 27(8): 1586-1588
[8] QI Jian-Qing, WANG Lei, DAI Xi. Antiferromagnetism of Repulsively Interacting Fermions in a Harmonic Trap[J]. Chin. Phys. Lett., 2010, 27(8): 1586-1588
[9] CHEN Lei-Ming, LI Guang-Cheng, ZHANG Yan, GUO Yan-Feng. Film Thickness Dependence of Rectifying Properties of La1.85Sr0.15CuO4/Nb-SrTiO3 Junctions[J]. Chin. Phys. Lett., 2010, 27(7): 1586-1588
[10] ZHANG Hong-Biao, TIAN Li-Jun,. Fidelity Susceptibility in the SU(2) and SU(1,1) Algebraic Structure Models[J]. Chin. Phys. Lett., 2010, 27(5): 1586-1588
[11] YOU Feng, WANG Zheng, XIE Qing-Lian, JI Lu, YUE Hong-Wei, ZHAO Xin-Jie, FANG Lan, YAN Shao-Lin. Fabrication and Properties of Double-Side Tl2Ba2CaCu2O8 Thin Film on CeO2 Buffered Sapphire Substrate[J]. Chin. Phys. Lett., 2010, 27(4): 1586-1588
[12] LU Hong-Yan, WAN Yuan, HE Xiang-Mei, WANG Qiang-Hua. Mechanism of Pseudogap Detected by Electronic Raman Scattering: Phase Fluctuation or Hidden Order?[J]. Chin. Phys. Lett., 2009, 26(9): 1586-1588
[13] HUANG Bei-Bing, WAN Shao-Long. First and Second Sound Modes in a Uniform Fermi Gas[J]. Chin. Phys. Lett., 2009, 26(7): 1586-1588
[14] SU Xin-Yan, HAN Yan, WANG Jian, YAO Jin-Jie. Modelling of Hot-Electron Energy in Short-Channel MOSFETs by Electrical Method[J]. Chin. Phys. Lett., 2009, 26(3): 1586-1588
[15] GU Shi-Jian . Density-Functional Fidelity Approach to Quantum Phase Transitions[J]. Chin. Phys. Lett., 2009, 26(2): 1586-1588
Viewed
Full text


Abstract