Chin. Phys. Lett.  2003, Vol. 20 Issue (9): 1441-1443    DOI:
Original Articles |
A Method of Controlling Synchronization in Different Systems
CHEN Jun;LIU Zeng-Rong
Center for Nonlinear Science, Shanghai University, Shanghai 200436 Department of Mathematics, Shanghai University, Shanghai 200436
Cite this article:   
CHEN Jun, LIU Zeng-Rong 2003 Chin. Phys. Lett. 20 1441-1443
Download: PDF(244KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new control method to synchronize between two different systems is proposed and the mathematical proof of this method is provided. Moreover, numerical simulation validates the efficiency of the proposed method.
Keywords: 05.45.+b     
Published: 01 September 2003
PACS:  05.45.+b  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2003/V20/I9/01441
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Jun
LIU Zeng-Rong
Related articles from Frontiers Journals
[1] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 1441-1443
[2] MIAO Qing-Ying, FANG Jian-An, TANG Yang, DONG Ai-Hua. Increasing-order Projective Synchronization of Chaotic Systems with Time Delay[J]. Chin. Phys. Lett., 2009, 26(5): 1441-1443
[3] BU Yun, WEN Guang-Jun, ZHOU Xiao-Jia, ZHANG Qiang. A Novel Adaptive Predictor for Chaotic Time Series[J]. Chin. Phys. Lett., 2009, 26(10): 1441-1443
[4] FANG Jin-Qing, YU Xing-Huo. A New Type of Cascading Synchronization for Halo-Chaos and Its Potential for Communication Applications[J]. Chin. Phys. Lett., 2004, 21(8): 1441-1443
[5] He Wei-Zhong, XU Liu-Su, ZOU Feng-Wu. Dynamics of Coupled Quantum--Classical Oscillators[J]. Chin. Phys. Lett., 2004, 21(8): 1441-1443
[6] YIN Hua-Wei, LU Wei-Ping, WANG Peng-Ye. Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series[J]. Chin. Phys. Lett., 2004, 21(6): 1441-1443
[7] HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System[J]. Chin. Phys. Lett., 2004, 21(3): 1441-1443
[8] ZHENG Yong-Ai, NIAN Yi-Bei, LIU Zeng-Rong. Impulsive Synchronization of Discrete Chaotic Systems[J]. Chin. Phys. Lett., 2003, 20(2): 1441-1443
[9] FANG Jin-Qing, YU Xing-Huo, CHEN Guan-Rong. Controlling Halo-Chaos via Variable Structure Method[J]. Chin. Phys. Lett., 2003, 20(12): 1441-1443
[10] ZHANG Guang-Cai, ZHANG Hong-Jun,. Control Method of Cooling a Charged Particle Pair in a Paul Trap[J]. Chin. Phys. Lett., 2003, 20(11): 1441-1443
[11] ZHENG Yong-Ai, NIAN Yi-Bei, LIU Zeng-Rong. Impulsive Control for the Stabilization of Discrete Chaotic System[J]. Chin. Phys. Lett., 2002, 19(9): 1441-1443
[12] LI Ke-Ping, CHEN Tian-Lun. Phase Space Prediction Model Based on the Chaotic Attractor[J]. Chin. Phys. Lett., 2002, 19(7): 1441-1443
[13] ZHANG Hai-Yun, HE Kai-Fen. Charged Particle Motion in Temporal Chaotic and Spatiotemporal Chaotic Fields[J]. Chin. Phys. Lett., 2002, 19(4): 1441-1443
[14] ZHOU Xian-Rong, MENG Jie, , ZHAO En-Guang,. Spectral Statistics in the Cranking Model[J]. Chin. Phys. Lett., 2002, 19(2): 1441-1443
[15] LIN Sheng-Lu, ZHANG Qiu-Ju, ZHAO Ke, SONG Xiao-Hong, ZHANG Yan-Hui. Semiclassical Calculations of Recurrence Spectra for Lithium Atoms in Parallel Electric and Magnetic Fields[J]. Chin. Phys. Lett., 2002, 19(1): 1441-1443
Viewed
Full text


Abstract