Chin. Phys. Lett.  2003, Vol. 20 Issue (9): 1437-1440    DOI:
Original Articles |
Proper Accelerations of Time-Like Curves near a Null Geodesic
TIAN Gui-Hua1,2;ZHAO Zheng2
1School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 2Department of Physics, Beijing Normal University, Beijing 100875
Cite this article:   
TIAN Gui-Hua, ZHAO Zheng 2003 Chin. Phys. Lett. 20 1437-1440
Download: PDF(199KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract It is well known that when given a null geodesic γ0(λ) with a point r in (p,q) conjugate to p along γ0(λ), there will be a variation of γ0(λ) which can give a time-like curve from p to q. Here we prove that the time-like curves coming from the above-mentioned variation (with the second derivative β2 ≠ 0) have a proper acceleration A = √AaAa which approaches infinity as the time-like curve approaches the null geodesic. Because the curve obtained from variation of the null geodesic must be everywhere time-like, we also discuss the constraint of the‘acceleration’βa0 of the variation vector field on the null geodesic γ0(λ). The acceleration βa0 of the variation vector field Za on the null geodesic γ0(λ) cannot be zero.

Keywords: 04.20.Fy      04.20.Cv      04.20.Gz     
Published: 01 September 2003
PACS:  04.20.Fy (Canonical formalism, Lagrangians, and variational principles)  
  04.20.Cv (Fundamental problems and general formalism)  
  04.20.Gz (Spacetime topology, causal structure, spinor structure)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2003/V20/I9/01437
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TIAN Gui-Hua
ZHAO Zheng
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 1437-1440
[2] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 1437-1440
[3] ZHU Yin . Measurement of the Speed of Gravity[J]. Chin. Phys. Lett., 2011, 28(7): 1437-1440
[4] ZOU De-Cheng, YANG Zhan-Ying**, YUE Rui-Hong** . Thermodynamics of Slowly Rotating Charged Black Holes in Anti-de Sitter Einstein–Gauss–Bonnet Gravity[J]. Chin. Phys. Lett., 2011, 28(2): 1437-1440
[5] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 1437-1440
[6] A. Zerarka**, O. Haif-Khaif, K. Libarir, A. Attaf . Numerical Modeling for Generating the Bound State Energy via a Semi Inverse Variational Method Combined with a B-Spline Type Basis[J]. Chin. Phys. Lett., 2011, 28(1): 1437-1440
[7] HE Xiao-Gang, , MA Bo-Qiang,. Black Holes and Photons with Entropic Force[J]. Chin. Phys. Lett., 2010, 27(7): 1437-1440
[8] LIU Liao. Cosmological Gravitational Wave in de Sitter Spacetime[J]. Chin. Phys. Lett., 2010, 27(2): 1437-1440
[9] N. Ibotombi Singh, S. Kiranmla Chanu, S. Surendra Singh. Cosmological Models with Time Dependent G and Λ Coupling Scalars[J]. Chin. Phys. Lett., 2009, 26(6): 1437-1440
[10] GONG Tian-Xi, WANG Yong-Jiu. Orbital Precession Effect in the Reissner-Nordström Field with a Global Monopole[J]. Chin. Phys. Lett., 2009, 26(3): 1437-1440
[11] Zade S S, Patil K D, Mulkalwar P N. Non-Spherical Gravitational Collapse of Strange Quark Matter[J]. Chin. Phys. Lett., 2008, 25(5): 1437-1440
[12] Gamal G. L. Nashed. Moller's Energy of Kerr-NUT Metric[J]. Chin. Phys. Lett., 2008, 25(4): 1437-1440
[13] K. D. Patil, S. S. Zade, A. N. Mohod. Gravitational Collapse of Radiating Dyon Solution and Cosmic Censorship Hypothesis[J]. Chin. Phys. Lett., 2008, 25(3): 1437-1440
[14] ZET Gheorghe, MANTA Vasile, POPA Camelia. Gauge Model Based on Group G×SU(2)[J]. Chin. Phys. Lett., 2008, 25(2): 1437-1440
[15] V. Enache, Camelia Popa, V. Paun, M. Agop,. Reissner--Nordström-de--Sitter-type Solution by a Gauge Theory of Gravity[J]. Chin. Phys. Lett., 2008, 25(10): 1437-1440
Viewed
Full text


Abstract