Chin. Phys. Lett.  2003, Vol. 20 Issue (6): 787-789    DOI:
Original Articles |
Effect of Noise on Berry’s Phase for Quantum Computing
JING Hui1,2;GE Mo-Lin1
1Theoretical Physics Division, Nankai Institute of Mathematics, Nankai University, Tianjin 300071 2Laboratory for Quantum Optics, Shanghai Institute of Fine Machines and Optics, Chinese Academy of Sciences, Shanghai 201800
Cite this article:   
JING Hui, GE Mo-Lin 2003 Chin. Phys. Lett. 20 787-789
Download: PDF(211KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on a new type of two-level-system reservoir, we investigate the impact of dissipation on Berry’s phase of a spin trapped in a periodical external field. It is found that the existence of environmental noise could lead to a decaying term in the matrix of Berry’s phase as the sign of a decoherence process, which is in agreement with the result of Nazir et al. (Phys. Rev. A 65 (2002) 042303). Particularly, in comparison with a specialized case of the traditional Leggett dissipation model, we only shows the dependence of time but not temperature in decaying term. A concrete case is exhibited by using the one-dimensional Ohmic function.
Keywords: 03.65.Bz     
Published: 01 June 2003
PACS:  03.65.Bz  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2003/V20/I6/0787
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JING Hui
GE Mo-Lin
Related articles from Frontiers Journals
[1] CUI Bo, WU Song-Lin, YI Xue-Xi. Mean-Field Dynamics of a Two-Mode Bose-Einstein Condensate Subject to Decoherence[J]. Chin. Phys. Lett., 2010, 27(7): 787-789
[2] ZHAN You-Bang, ZHANG Qun-Yong, WANG Yu-Wu, MA Peng-Cheng. Schemes for Teleportation of an Unknown Single-Qubit Quantum State by Using an Arbitrary High-Dimensional Entangled State[J]. Chin. Phys. Lett., 2010, 27(1): 787-789
[3] XU Xu, ZHOU Xiao-Ji. Phase-Dependent Effects in Stern-Gerlach Experiments[J]. Chin. Phys. Lett., 2010, 27(1): 787-789
[4] MA Shan-Jun. Optical Four-Wave Mixing Operator, Fresnel Operators and Three-Mode Entangled State Representation[J]. Chin. Phys. Lett., 2009, 26(6): 787-789
[5] SHAO Dan, SHAO Liang, SHAO Chang-Gui, NODA Huzio. Entanglement of Area Quantums in Quantized Space[J]. Chin. Phys. Lett., 2008, 25(1): 787-789
[6] LU Dao-Ming, ZHENG Shi-Biao. Establishment of Entanglement for Two Atoms Trapped in Two Distant Bad Cavities[J]. Chin. Phys. Lett., 2007, 24(3): 787-789
[7] JI Hua, ZHAN Xiao-Gui, ZENG Hao-Sheng. Controlled Teleportation of Multi-Qudit Quantum Information[J]. Chin. Phys. Lett., 2007, 24(10): 787-789
[8] ZHENG Shi-Biao. Teleportation of Quantum States through Mixed Entangled Pairs[J]. Chin. Phys. Lett., 2006, 23(9): 787-789
[9] YAO Chun-Mei. Quantum Remote Control of Unitary Operations on a Qubit of Pure Entangled States[J]. Chin. Phys. Lett., 2006, 23(3): 787-789
[10] ZHENG Shi-Biao. Production of Three-Dimensional Maximal Entanglement for Two Cavity Modes[J]. Chin. Phys. Lett., 2006, 23(3): 787-789
[11] ZHAN Xiao-Gui, LI Hong-Mei, ZENG Hao-Sheng. Teleportation of Multi-qudit Entangled States[J]. Chin. Phys. Lett., 2006, 23(11): 787-789
[12] CHEN Chang-Yong, , GAO Ke-Lin,. Construction of Controlled-NOT Gate with Thermal Ions[J]. Chin. Phys. Lett., 2005, 22(4): 787-789
[13] ZHENG Shi-Biao. Generation of Three-Dimensional Entangled States for Two Atoms Trapped in Different Cavities[J]. Chin. Phys. Lett., 2005, 22(12): 787-789
[14] ZHENG Shi-Biao. Universal Quantum Cloning Machine with Atoms in an Optical Cavity[J]. Chin. Phys. Lett., 2004, 21(9): 787-789
[15] ZHAO Hai-Jun, FANG Xi-Ming. Does the Quantum Player Always Win the Classical One?[J]. Chin. Phys. Lett., 2004, 21(8): 787-789
Viewed
Full text


Abstract