Chin. Phys. Lett.  2003, Vol. 20 Issue (5): 759-762    DOI:
Original Articles |
Effect of Metallic Film in Diamond Growth from an Fe-Ni-C System at High Temperature and High Pressure
XU Bin1;LI Mu-Sen2;YIN Long-Wei2;CUI Jian-Jun2;GONG Jian-Hong2
1Department of Materials Science and Engineering, Shandong Institute of Architecture and Engineering, Ji’nan 250014 2College of Materials Science and Engineering, Shandong University, Ji’nan 250061
Cite this article:   
XU Bin, LI Mu-Sen, YIN Long-Wei et al  2003 Chin. Phys. Lett. 20 759-762
Download: PDF(459KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The metallic film surrounding a diamond single crystal, which plays an important role in the diamond growth from an Fe-Ni-C system, has been successfully investigated by using transmission electron microscopy (TEM), Raman spectroscopy and x-ray photo-electron spectroscopy (XPS). Diamond and graphite were not found in surface layer (near diamond) of the film by TEM and Raman spectroscopy, but a parallel relationship exists between the (1ī ī) plane of γ-(Fe,Ni) and the (100) plane of (Fe,Ni)3C in this region. Compared to that of solvent metal (catalyst) near diamond, the binding energy in the valence bands of iron, nickel and carbon atoms of the film has an increase of 0.9 eV. According to the microstructures on the film obtained by the TEM, Raman spectra, and XPS, the catalytic mechanism of the film may be assumed as follows. In the surface layer of the film, iron and nickel atoms in the γ-(Fe,Ni) lattice can absorb carbon atoms in the (Fe,Ni)3C lattice and make them transform to an sp3-like state. Then carbon atoms with the sp3-like structure are separated from the (Fe,Ni)3C and stack on the growing diamond crystal. This study provides a direct evidence for the diamond growth from a metallic catalyst-graphite system under high temperature and high pressure.


Keywords: 81.05.Uw      81.10.Aj      68.37.Ps     
Published: 01 May 2003
PACS:  81.05.Uw  
  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  68.37.Ps (Atomic force microscopy (AFM))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2003/V20/I5/0759
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Bin
LI Mu-Sen
YIN Long-Wei
CUI Jian-Jun
GONG Jian-Hong
Related articles from Frontiers Journals
[1] YANG Gong-Xian, GONG Xiu-Fang. Laser-Induced Distortions and Disturbance Propagation of Delocalized Electronic States in Monatomic Carbon Chains[J]. Chin. Phys. Lett., 2012, 29(6): 759-762
[2] MAO Han-Qing, LI Na, CHEN Xi, XUE Qi-Kun. Modulation of Step Heights of Thin Pb Films by the Quantum Size Effect Observed by Non-Contact Atomic Force Microscopy[J]. Chin. Phys. Lett., 2012, 29(6): 759-762
[3] LI Zi-Yue, ZHANG Hui-Min, LIU Li-Hu, SUN Hui-Yuan. Influence of Heating Rate on Morphologies and Magnetic Properties of α-Fe2O3[J]. Chin. Phys. Lett., 2012, 29(3): 759-762
[4] JI Xiao-Rui, YANG Xiao-Hong. Removing Impurity of cBN Crystal Prepared at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2012, 29(3): 759-762
[5] LI Zhe-Yang, **, HAN Ping, LI Yun, NI Wei-Jiang, BAO Hui-Qiang, LI Yu-Zhu . Epitaxial Growth of 4H-SiC on 4° Off-Axis Substrate for Power Devices[J]. Chin. Phys. Lett., 2011, 28(9): 759-762
[6] LU Yun-Bin, LIAO Shu-Zhi**, PENG Hao-Jun, ZHANG Chun, ZHOU Hui-Ying, XIE Hao-Wen, OUYANG Yi-Fang, ZHANG Bang-Wei, . Size Model of Critical Temperature for Grain Growth in Nano V and Au[J]. Chin. Phys. Lett., 2011, 28(8): 759-762
[7] GAO Zhao-Shun, ZHANG Xian-Ping, WANG Dong-Liang, QI Yan-Peng, WANG Lei, CHENG Jun-Sheng, WANG Qiu-Liang, MA Yan-Wei**, AWAJI Satoshi, WATANABE Kazuo . Fabrication and Properties of Aligned Sr0.6K0.4Fe2As2 Superconductors by High Magnetic Field Processing[J]. Chin. Phys. Lett., 2011, 28(6): 759-762
[8] LI Shang-Sheng, LI Xiao-Lei, MA Hong-An, SU Tai-Chao, XIAO Hong-Yu, HUANG Guo-Feng, LI Yong, ZHANG Yi-Shun, JIA Xiao-Peng, ** . Reaction Mechanism of Al and N in Diamond Growth from a FeNiCo-C System[J]. Chin. Phys. Lett., 2011, 28(6): 759-762
[9] PAN Jian-Hai, WANG Xin-Qiang**, CHEN Guang, LIU Shi-Tao, FENG Li, XU Fu-Jun, TANG Ning, SHEN Bo*** . Epitaxy of an Al-Droplet-Free AlN Layer with Step-Flow Features by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2011, 28(6): 759-762
[10] GUO Xiao-Song, BAO Zhong, ZHANG Shan-Shan, XIE Er-Qing** . A Novel Model of the H Radical in Hot-Filament Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2011, 28(2): 759-762
[11] FU Di, XIE Dan, ZHANG Chen-Hui, ZHANG Di, NIU Jie-Bin, QIAN He, LIU Li-Tian,. Preparation and Characteristics of Nanoscale Diamond-Like Carbon Films for Resistive Memory Applications[J]. Chin. Phys. Lett., 2010, 27(9): 759-762
[12] ZHANG Fu-Chun, SHA Mao-Lin, REN Xiu-Ping, WU Guo-Zhong, HU Jun, ZHANG Yi. Morphology and Wettability of [Bmim][PF6] Ionic Liquid on HOPG Substrate[J]. Chin. Phys. Lett., 2010, 27(8): 759-762
[13] ZHAO Ya-Jun, CHENG Qian, QIAN Meng-Lu. Frequency Response of the Sample Vibration Mode in Scanning Probe Acoustic Microscope[J]. Chin. Phys. Lett., 2010, 27(5): 759-762
[14] LEI Tong, WANG Xiao-Ping, WANG Li-Jun, LV Cheng-Rui, ZHANG Shi, ZHU Yu-Zhuan. Electroluminescence from Multilayered Diamond/CeF3/SiO2 Films[J]. Chin. Phys. Lett., 2010, 27(4): 759-762
[15] HOU Zhao-Yang, LIU Li-Xia, LIU Rang-Su, TIAN Ze-An. Tracing Nucleation and Growth on Atomic Level in Amorphous Sodium by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2010, 27(3): 759-762
Viewed
Full text


Abstract