Chin. Phys. Lett.  2003, Vol. 20 Issue (5): 735-737    DOI:
Original Articles |
A Modified Mean Field Theory for Spin Systems with Orbital Degeneracy
SHI Da-Ning
College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016
Cite this article:   
SHI Da-Ning 2003 Chin. Phys. Lett. 20 735-737
Download: PDF(226KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In order to understand the ground state of spin systems with orbital degeneracy, we present a modified mean-field theory that includes four order parameters. Our mean-field results suggest that for a small Hund interaction, the flavor liquid state is still stable against the solid state, but long-range orders may be attained in the system with sufficient deviation from the SU(4) limit. Finally, the implications for the experimental observations on the system LaMnO3 are discussed.
Keywords: 75.10.Jm      11.30.-j     
Published: 01 May 2003
PACS:  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  11.30.-j (Symmetry and conservation laws)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2003/V20/I5/0735
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHI Da-Ning
Related articles from Frontiers Journals
[1] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 735-737
[2] ZHU Ren-Gui** . Frustrated Ferromagnetic Spin Chain near the Transition Point[J]. Chin. Phys. Lett., 2011, 28(9): 735-737
[3] JIANG Zhi-Wei . A New Model for Quark Mass Matrix[J]. Chin. Phys. Lett., 2011, 28(6): 735-737
[4] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 735-737
[5] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 735-737
[6] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 735-737
[7] Sudha, **, B. G. Divyamani, A. R. Usha Devi, . Loss of Exchange Symmetry in Multiqubit States under Ising Chain Evolution[J]. Chin. Phys. Lett., 2011, 28(2): 735-737
[8] Erhan Albayrak . Thermal Entanglement in a Two-Qutrit Spin-1 Anisotropic Heisenberg Model[J]. Chin. Phys. Lett., 2011, 28(2): 735-737
[9] CAI Jiang-Tao, ABLIZ Ahmad**, BAI Yan-Kui, JIN Guang-Sheng . Effects of Dzyaloshinskii–Moriya Interaction on Optimal Dense Coding Using a Two-Qubit Heisenberg XXZ Chain with and without External Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(2): 735-737
[10] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 735-737
[11] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 735-737
[12] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 735-737
[13] ZHANG Hong-Biao, TIAN Li-Jun,. Fidelity Susceptibility in the SU(2) and SU(1,1) Algebraic Structure Models[J]. Chin. Phys. Lett., 2010, 27(5): 735-737
[14] ZHENG Shi-Wang, XIE Jia-Fang, WANG Jian-Bo, CHEN Xiang-Wei. Another Conserved Quantity by Mei Symmetry of Tzénoff Equation for Non-Holonomic Systems[J]. Chin. Phys. Lett., 2010, 27(3): 735-737
[15] XIE Yin-Li, JIA Li-Qun. Special Lie–Mei Symmetry and Conserved Quantities of Appell Equations Expressed by Appell Fun[J]. Chin. Phys. Lett., 2010, 27(12): 735-737
Viewed
Full text


Abstract