Chin. Phys. Lett.  2003, Vol. 20 Issue (4): 448-451    DOI:
Original Articles |
Chaotic Dynamical Behaviour in Soliton Solutions for a New (2+1)-Dimensional Long Dispersive Wave System
ZHANG Jie-Fang1;ZHENG Chun-Long1;MENG Jian-Ping1;FANG Jian-Ping1
1Institute of Nonlinear Physics, Zhejiang Normal University, Jinhua 321004 2Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072 3Department of Physics, Zhejiang Lishui Normal College, Lishui 323000
Cite this article:   
ZHANG Jie-Fang, ZHENG Chun-Long, MENG Jian-Ping et al  2003 Chin. Phys. Lett. 20 448-451
Download: PDF(665KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract With the help of variable separation approach, a quite general excitation of a new (2+1)-dimensional long dispersive wave system is derived. The chaotic behaviour, such as chaotic line soliton patterns, chaotic dromion patterns, chaotic-period patterns, and chaotic-chaotic patterns, in some new localized excitations are found by selecting appropriate functions.
Keywords: 03.40.Kf      03.65.Ge      05.45.Yv     
Published: 01 April 2003
PACS:  03.40.Kf  
  03.65.Ge (Solutions of wave equations: bound states)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2003/V20/I4/0448
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Jie-Fang
ZHENG Chun-Long
MENG Jian-Ping
FANG Jian-Ping
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 448-451
[2] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 448-451
[3] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 448-451
[4] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 448-451
[5] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 448-451
[6] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 448-451
[7] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 448-451
[8] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 448-451
[9] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 448-451
[10] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 448-451
[11] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 448-451
[12] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 448-451
[13] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 448-451
[14] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 448-451
[15] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 448-451
Viewed
Full text


Abstract