Chin. Phys. Lett.  2003, Vol. 20 Issue (2): 199-201    DOI:
Original Articles |
Impulsive Synchronization of Discrete Chaotic Systems
ZHENG Yong-Ai1;NIAN Yi-Bei2;LIU Zeng-Rong3
1Department of Mathematics, Yangzhou University, Yangzhou 225006 2School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013 3Department of Mathematics, Shanghai University, Shanghai 200436
Cite this article:   
ZHENG Yong-Ai, NIAN Yi-Bei, LIU Zeng-Rong 2003 Chin. Phys. Lett. 20 199-201
Download: PDF(291KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Impulsive synchronization of two chaotic maps is reformulated as impulsive control of the synchronization error system. We then present a theorem on the asymptotic synchronization of two chaotic maps by using synchronization impulses with varying impulsive intervals. As an example and application of the theorem, we derives some sufficient conditions for the synchronization of two chaotic Lozi maps via impulsive control. The effectiveness of this approach has been demonstrated with chaotic Lozi map.
Keywords: 05.45.+b     
Published: 01 February 2003
PACS:  05.45.+b  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2003/V20/I2/0199
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHENG Yong-Ai
NIAN Yi-Bei
LIU Zeng-Rong
Related articles from Frontiers Journals
[1] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 199-201
[2] MIAO Qing-Ying, FANG Jian-An, TANG Yang, DONG Ai-Hua. Increasing-order Projective Synchronization of Chaotic Systems with Time Delay[J]. Chin. Phys. Lett., 2009, 26(5): 199-201
[3] BU Yun, WEN Guang-Jun, ZHOU Xiao-Jia, ZHANG Qiang. A Novel Adaptive Predictor for Chaotic Time Series[J]. Chin. Phys. Lett., 2009, 26(10): 199-201
[4] FANG Jin-Qing, YU Xing-Huo. A New Type of Cascading Synchronization for Halo-Chaos and Its Potential for Communication Applications[J]. Chin. Phys. Lett., 2004, 21(8): 199-201
[5] He Wei-Zhong, XU Liu-Su, ZOU Feng-Wu. Dynamics of Coupled Quantum--Classical Oscillators[J]. Chin. Phys. Lett., 2004, 21(8): 199-201
[6] YIN Hua-Wei, LU Wei-Ping, WANG Peng-Ye. Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series[J]. Chin. Phys. Lett., 2004, 21(6): 199-201
[7] HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System[J]. Chin. Phys. Lett., 2004, 21(3): 199-201
[8] CHEN Jun, LIU Zeng-Rong. A Method of Controlling Synchronization in Different Systems[J]. Chin. Phys. Lett., 2003, 20(9): 199-201
[9] FANG Jin-Qing, YU Xing-Huo, CHEN Guan-Rong. Controlling Halo-Chaos via Variable Structure Method[J]. Chin. Phys. Lett., 2003, 20(12): 199-201
[10] ZHANG Guang-Cai, ZHANG Hong-Jun,. Control Method of Cooling a Charged Particle Pair in a Paul Trap[J]. Chin. Phys. Lett., 2003, 20(11): 199-201
[11] ZHENG Yong-Ai, NIAN Yi-Bei, LIU Zeng-Rong. Impulsive Control for the Stabilization of Discrete Chaotic System[J]. Chin. Phys. Lett., 2002, 19(9): 199-201
[12] LI Ke-Ping, CHEN Tian-Lun. Phase Space Prediction Model Based on the Chaotic Attractor[J]. Chin. Phys. Lett., 2002, 19(7): 199-201
[13] ZHANG Hai-Yun, HE Kai-Fen. Charged Particle Motion in Temporal Chaotic and Spatiotemporal Chaotic Fields[J]. Chin. Phys. Lett., 2002, 19(4): 199-201
[14] ZHOU Xian-Rong, MENG Jie, , ZHAO En-Guang,. Spectral Statistics in the Cranking Model[J]. Chin. Phys. Lett., 2002, 19(2): 199-201
[15] LIN Sheng-Lu, ZHANG Qiu-Ju, ZHAO Ke, SONG Xiao-Hong, ZHANG Yan-Hui. Semiclassical Calculations of Recurrence Spectra for Lithium Atoms in Parallel Electric and Magnetic Fields[J]. Chin. Phys. Lett., 2002, 19(1): 199-201
Viewed
Full text


Abstract