Chin. Phys. Lett.  2002, Vol. 19 Issue (8): 1135-1140    DOI:
Original Articles |
Fractal Dimension of Randomly Branched Polymers in a Good Solvent
BA Xin-Wu;ZHANG Shu-Wen;WANG Hai-Jun;WANG Su-Juan;HAN Ying-Hui
Department of Chemistry, Hebei University, Baoding 071002
Cite this article:   
BA Xin-Wu, ZHANG Shu-Wen, WANG Hai-Jun et al  2002 Chin. Phys. Lett. 19 1135-1140
Download: PDF(212KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a concept of subchain for the randomly branched polymers. As a direct application of this concept, the asymptotic expression of the average mean square radius of gyration is determined to give the fractal dimensions, in which the excluded volume effect is taken into consideration. Furthermore, We investigate a scaling relation that is associates with the Flory exponent v, the fractal dimension df and polydispersity exponent τ.
Keywords: 47.53.+n      61.43.Hv      36.20.Hb     
Published: 01 August 2002
PACS:  47.53.+n (Fractals in fluid dynamics)  
  61.43.Hv (Fractals; macroscopic aggregates (including diffusion-limited Aggregates))  
  36.20.Hb (Configuration (bonds, dimensions))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2002/V19/I8/01135
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
BA Xin-Wu
ZHANG Shu-Wen
WANG Hai-Jun
WANG Su-Juan
HAN Ying-Hui
Related articles from Frontiers Journals
[1] LI Jian-Hua, YU Bo-Ming, ZOU Ming-Qing. A Model for Fractal Dimension of Rough Surfaces[J]. Chin. Phys. Lett., 2009, 26(11): 1135-1140
[2] KOU Jian-Long, LU Hang-Jun, WU Feng-Min, XU You-Sheng. Sprout Branching of Tumour Capillary Network Growth: Fractal Dimension and Multifractal Structure[J]. Chin. Phys. Lett., 2008, 25(5): 1135-1140
[3] YANG Lei, PEI Wen-Jiang, LI Tao, CHEUNG Yiu-Ming, HE Zhen-Ya. Topological Self-Similar Networks Introduced by Diffusion-Limited Aggregation Mechanism[J]. Chin. Phys. Lett., 2008, 25(3): 1135-1140
[4] YUN Mei-Juan, YU Bo-Ming, Xu Peng, CAI Jian-Chao. Fractal Analysis of Power-Law Fluid in a Single Capillary[J]. Chin. Phys. Lett., 2008, 25(2): 1135-1140
[5] KANG Yan-Mei, JIANG Yao-Lin. Long-Time Dynamic Response and Stochastic Resonance of Subdiffusive Overdamped Bistable Fractional Fokker--Planck Systems[J]. Chin. Phys. Lett., 2008, 25(10): 1135-1140
[6] DAI Hai-Yang, WANG Li-Wu, JIANG Hui, HUANG Ning-Kang. A New Empirical Model for Estimation of sp3 Fraction in Diamond-Like Carbon Films[J]. Chin. Phys. Lett., 2007, 24(7): 1135-1140
[7] TANG Qiang, TIAN Ju-Ping, YAO Kai-Lun,. Scaling Behaviour of Diffusion Limited Aggregation with Linear Seed[J]. Chin. Phys. Lett., 2006, 23(11): 1135-1140
[8] LIAO Tian-He, GAO Qiong. Fractional Fourier Transform of Cantor Sets[J]. Chin. Phys. Lett., 2005, 22(9): 1135-1140
[9] Z. Merdan, M. Bayirli. Computation of the Fractal Pattern in Manganese Dendrites[J]. Chin. Phys. Lett., 2005, 22(8): 1135-1140
[10] CHEN Wen. Lévy Stable Distribution and [0,2] Power Law Dependence of Acoustic Absorption on Frequency in Various Lossy Media[J]. Chin. Phys. Lett., 2005, 22(10): 1135-1140
[11] LIU Zheng, XU Jian-Jun, LIN Zhi-Fang. Photonic Band Gaps in Two-Dimensional Crystals with Fractal Structure[J]. Chin. Phys. Lett., 2003, 20(4): 1135-1140
[12] ZHANG Duan-Ming, LEI Ya-Jie, PAN Gui-Jun, YU Bo-Ming. Langevin Simulation of Non-Uniform Granular Gases[J]. Chin. Phys. Lett., 2003, 20(12): 1135-1140
[13] LI Dan, ZHENG De-Juan, ZHOU Yan, HAN Bao-Shan. Fractal Study of Multi-branched Domains in Garnet Bubble Films[J]. Chin. Phys. Lett., 2002, 19(5): 1135-1140
[14] GUO Li-Xin, WU Zhen-Sen. Moment Method with Wavelet Expansions for Fractal Rough Surface Scattering[J]. Chin. Phys. Lett., 2002, 19(11): 1135-1140
[15] LIU Wen-Xian, TENG Shu-Yun, ZHANG Ning-Yu, LIU De-Li, CHENG Chuan-Fu. Computational Generation and the Simulation of the Light Scattering of Self-Affine Fractal Random Surface[J]. Chin. Phys. Lett., 2001, 18(2): 1135-1140
Viewed
Full text


Abstract