Chin. Phys. Lett.  2002, Vol. 19 Issue (8): 1054-1057    DOI:
Original Articles |
Chaos Control and Anti-control via a Fuzzy Neural Network Inverse System Method
REN Hai-Peng;LIU Ding
School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048
Cite this article:   
REN Hai-Peng, LIU Ding 2002 Chin. Phys. Lett. 19 1054-1057
Download: PDF(496KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a new method for chaos control and anti-control, which is referred to as the fuzzy-neural network inverse system method (FNNIS). The Sugeno-type fuzzy-neural network (FNN) is employed to learn the kinetics of the system to be controlled, then the FNN model is used with the inverse system method to make the system to be controlled to track the reference input. If the system to be controlled is chaotic and the reference input is non-chaotic, chaos control can be implemented via the FNNIS method. If the system to be controlled is non-chaotic and the reference input is chaotic, chaos anti-control can be implemented. Theorems about the effect of the FNN model error upon control are established. The simulation results show that this method is feasible and effective for chaos control and anti-control.
Keywords: 05.45.Gg      05.45.-b     
Published: 01 August 2002
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.-b  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2002/V19/I8/01054
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
REN Hai-Peng
LIU Ding
Related articles from Frontiers Journals
[1] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 1054-1057
[2] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 1054-1057
[3] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 1054-1057
[4] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 1054-1057
[5] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 1054-1057
[6] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 1054-1057
[7] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 1054-1057
[8] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 1054-1057
[9] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 1054-1057
[10] LI Hai-Yan**, HU Yun-An . Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(12): 1054-1057
[11] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 1054-1057
[12] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 1054-1057
[13] DU Mao-Kang**, HE Bo, WANG Yong . Security Analysis of a Block Encryption Algorithm Based on Dynamic Sequences of Multiple Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(1): 1054-1057
[14] XU Jie, LONG Ke-Ping, FOURNIER-PRUNARET Danièle, TAHA Abdel-Kaddous, CHARGE Pascal. Chaotic Dynamics in a Sine Square Map: High-Dimensional Case (N≥3)[J]. Chin. Phys. Lett., 2010, 27(8): 1054-1057
[15] LU Xiao-Qing, Francis Austin, CHEN Shi-Hua. Cluster Consensus of Nonlinearly Coupled Multi-Agent Systems in Directed Graphs[J]. Chin. Phys. Lett., 2010, 27(5): 1054-1057
Viewed
Full text


Abstract