Chin. Phys. Lett.  2002, Vol. 19 Issue (8): 1044-1047    DOI:
Original Articles |
Entanglement of Two-Qubit Quantum Heisenberg XYZ Chain
XI Xiao-Qiang1,2;HAO San-Ru1;CHEN Wen-Xue2;YUE Rui-Hong1
1Institute of Modern Physics, Northwest University, Xi’an 710069 2Fundamental Department of Xi’an Institute of Posts and Telecommunications, Xi’an 710061
Cite this article:   
XI Xiao-Qiang, HAO San-Ru, CHEN Wen-Xue et al  2002 Chin. Phys. Lett. 19 1044-1047
Download: PDF(360KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We derive the analytic expression of the concurrence in the quantum Heisenberg XYZ model and discuss the influence of parameters J, Δ, and Γ on the concurrence. By choosing different values Γ and Δ, we obtain the XX, XY, XXX and XXZ chains. The concurrence decreases with increasing temperature. When T → 0, the concurrence reaches its maximum value 1, i.e., the entangled state, | > = √2/2 (|01> - |10>), is maximum entanglement. For the XXZ chain, when Γ → ∞, the concurrence will meet its maximum value Cmax = sinh(1/T)/cosh(1/T).
Keywords: 03.65.Ud      03.67.Lx      75.10.Jm     
Published: 01 August 2002
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Lx (Quantum computation architectures and implementations)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2002/V19/I8/01044
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XI Xiao-Qiang
HAO San-Ru
CHEN Wen-Xue
YUE Rui-Hong
Related articles from Frontiers Journals
[1] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 1044-1047
[2] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 1044-1047
[3] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 1044-1047
[4] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 1044-1047
[5] CAO Gang, WANG Li, TU Tao, LI Hai-Ou, XIAO Ming, GUO Guo-Ping. Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit[J]. Chin. Phys. Lett., 2012, 29(3): 1044-1047
[6] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 1044-1047
[7] CHEN Liang, WAN Wei, XIE Yi, ZHOU Fei, FENG Mang. Microscopic Surface-Electrode Ion Trap for Scalable Quantum Information Processing[J]. Chin. Phys. Lett., 2012, 29(3): 1044-1047
[8] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 1044-1047
[9] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 1044-1047
[10] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 1044-1047
[11] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 1044-1047
[12] HOU Shi-Yao, CUI Jing-Xin, LI Jun-Lin** . Experimental Realization of Braunstein's Weight-Decision Algorithm[J]. Chin. Phys. Lett., 2011, 28(9): 1044-1047
[13] XIE Yi, ZHOU Fei, CHEN Liang, WAN Wei, FENG Mang** . Micromotion Compensation and Photoionization of Ions in a Linear Trap[J]. Chin. Phys. Lett., 2011, 28(9): 1044-1047
[14] ZHU Ren-Gui** . Frustrated Ferromagnetic Spin Chain near the Transition Point[J]. Chin. Phys. Lett., 2011, 28(9): 1044-1047
[15] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 1044-1047
Viewed
Full text


Abstract