Chin. Phys. Lett.  2002, Vol. 19 Issue (6): 769-771    DOI:
Original Articles |
Fractal Solutions of the Nizhnik-Novikov-Veselov Equation
LOU Sen-Yue1,2;TANG Xiao-Yan1;CHEN Chun-Li1
1Department of Physics, Shanghai Jiao Tong University, Shanghai 200030 2Department of Physics, Ningbo University, Ningbo 315211
Cite this article:   
LOU Sen-Yue, TANG Xiao-Yan, CHEN Chun-Li 2002 Chin. Phys. Lett. 19 769-771
Download: PDF(843KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Considering that some types of fractal solutions may appear in many (2+1)-dimensional soliton equations because some arbitrary functions can be included in the exact solutions, we use some special types of lower dimensional fractal functions to construct higher dimensional fractal solutions of the Nizhnik-Novikov-Veselov equation. The static eagle shape fractal solutions, fractal dromion solutions and the fractal lump solutions are given in detail.
Keywords: 05.45.Yv      05.45.-a      02.30.Ik     
Published: 01 June 2002
PACS:  05.45.Yv (Solitons)  
  05.45.-a (Nonlinear dynamics and chaos)  
  02.30.Ik (Integrable systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2002/V19/I6/0769
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LOU Sen-Yue
TANG Xiao-Yan
CHEN Chun-Li
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 769-771
[2] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 769-771
[3] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 769-771
[4] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 769-771
[5] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 769-771
[6] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 769-771
[7] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 769-771
[8] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 769-771
[9] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 769-771
[10] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 769-771
[11] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 769-771
[12] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 769-771
[13] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 769-771
[14] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 769-771
[15] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 769-771
Viewed
Full text


Abstract