Chin. Phys. Lett.  2002, Vol. 19 Issue (6): 762-764    DOI:
Original Articles |
Failure of the Ott-Grebogi-York-Type Controllers for Nonhyperbolic Chaos
HUANG De-Bin
Department of Mathematics, Shanghai University, Shanghai 200436
Cite this article:   
HUANG De-Bin 2002 Chin. Phys. Lett. 19 762-764
Download: PDF(190KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract It is considered that nonhyperbolicity affects the achievement of the Ott-Grebogi-York-Type (OGY-type) controllers. The result shows that, without a priori analytical knowledge to dynamics, it is impossible to estimate the local dynamics from an experimental time series due to the singularity of the corresponding least-squares problem which results from the nonhyperbolicity in the system, Thus, it is necessary to destroy chaos before obtaining the formation for attempting control by experimental time series. The result just explains a physical experimental result in the failure of chaos control in a parametrically excited pendulum model.
Keywords: 05.45.Gg      05.45.Tp     
Published: 01 June 2002
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Tp (Time series analysis)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2002/V19/I6/0762
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG De-Bin
Related articles from Frontiers Journals
[1] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 762-764
[2] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 762-764
[3] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 762-764
[4] KONG De-Ren, XIE Hong-Bo** . Assessment of Time Series Complexity Using Improved Approximate Entropy[J]. Chin. Phys. Lett., 2011, 28(9): 762-764
[5] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 762-764
[6] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 762-764
[7] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 762-764
[8] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 762-764
[9] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 762-764
[10] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 762-764
[11] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 762-764
[12] LI Hai-Yan**, HU Yun-An . Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(12): 762-764
[13] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 762-764
[14] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 762-764
[15] QU Jing-Yi**, WANG Ru-Bin, ZHANG Yuan, DU Ying . A Neurodynamical Model for Selective Visual Attention[J]. Chin. Phys. Lett., 2011, 28(10): 762-764
Viewed
Full text


Abstract