Chin. Phys. Lett.  2002, Vol. 19 Issue (2): 280-282    DOI:
Original Articles |
Scaling Law of Exponents in Cosmological Clustering
ZHANG Hang;LI Xiao-Qing
Department of Physics, Nanjing Normal University, Nanjing 210097
Cite this article:   
ZHANG Hang, LI Xiao-Qing 2002 Chin. Phys. Lett. 19 280-282
Download: PDF(191KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The density of N-clusters (the cluster which contains N galaxies) in the universe is shown from observations to scale with N as nN ∝ N with τ = 3/γ +1 and the correlation exponent γ ≈ 1.8. Correspondingly, a scaling relation τ = 29-9γ/12-4γ between the two exponents, which agrees with the observations, is found analytically in our naive clustering model.
Keywords: 98.65.-r      82.20.Mj      05.70.Jk     
Published: 01 February 2002
PACS:  98.65.-r (Galaxy groups, clusters, and superclusters; large scale structure of the Universe)  
  82.20.Mj  
  05.70.Jk (Critical point phenomena)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2002/V19/I2/0280
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Hang
LI Xiao-Qing
Related articles from Frontiers Journals
[1] LU Yun-Bin, LIAO Shu-Zhi**, PENG Hao-Jun, ZHANG Chun, ZHOU Hui-Ying, XIE Hao-Wen, OUYANG Yi-Fang, ZHANG Bang-Wei, . Size Model of Critical Temperature for Grain Growth in Nano V and Au[J]. Chin. Phys. Lett., 2011, 28(8): 280-282
[2] WANG Ping, ZHENG Qiang, WANG Wen-Ge. Decay of Loschmidt Echo at a Critical Point in the Lipkin-Meshkov-Glick model[J]. Chin. Phys. Lett., 2010, 27(8): 280-282
[3] HU Bin, LI Fang, ZHOU Hou-Shun. Robustness of Complex Networks under Attack and Repair[J]. Chin. Phys. Lett., 2009, 26(12): 280-282
[4] WU Jun, TAN Yue-Jin, DENG Hong-Zhong, LI Yong. A Robustness Model of Complex Networks with Tunable Attack Information Parameter[J]. Chin. Phys. Lett., 2007, 24(7): 280-282
[5] GU Shi-Jian, TIAN Guang-Shan, LIN Hai-Qing. Pairwise Entanglement and Quantum Phase Transitions in Spin Systems[J]. Chin. Phys. Lett., 2007, 24(10): 280-282
[6] ZHANG Huan, LIU Zong-Hua, MA Wei-Chuan. Epidemic Propagation and Microscopic Structure of Complex Networks[J]. Chin. Phys. Lett., 2006, 23(4): 280-282
[7] WU Xin-Tian. Two-Dimensional Saddle Point Equation of Ginzburg--Landau Hamiltonian for the Diluted Ising Model[J]. Chin. Phys. Lett., 2006, 23(2): 280-282
[8] PAN Gui-Jun, ZHANG Duan-Ming, YIN Yan-Ping, HE Min-Hua. Avalanche Dynamics in Quenched Random Directed Sandpile Models[J]. Chin. Phys. Lett., 2006, 23(10): 280-282
[9] B. Kutlu, M. Civi. Critical Finite Size Scaling Relation of the Order-Parameter Probability Distribution for the Three-Dimensional Ising Model on the Creutz Cellular Automaton[J]. Chin. Phys. Lett., 2006, 23(10): 280-282
[10] WANG Lin-Cheng, CUI Hai-Tao, YI Xue-Xi. Decoherence Induced by Spin Chain Environment[J]. Chin. Phys. Lett., 2006, 23(10): 280-282
[11] BAO Jing-Dong, Lü Kun, LIU Ling, JIA Ying. Oscillation of Hot Fissioning Nuclei around a Saddle Point[J]. Chin. Phys. Lett., 2005, 22(8): 280-282
[12] LUO Jia-Yuan, OUYANG Qi. Exploring the Critical Sensitivity in Small-World Networks[J]. Chin. Phys. Lett., 2004, 21(9): 280-282
[13] WAN Yong-Ge, WU Zhong-Liang, , ZHOU Gong-Wei. Small Stress Change Triggering a Big Earthquake: A Test of the Critical Point Hypothesis for Earthquakes[J]. Chin. Phys. Lett., 2003, 20(9): 280-282
[14] ZHAO Tong-Jun, ZHAN Yong, WU Jian-Hai, WANG Yong-Hong. A Flashing Model for Transport of Brownian Motors[J]. Chin. Phys. Lett., 2002, 19(9): 280-282
[15] MA Yu-Gang, SHEN Wen-Qing, ZHU Zhi-Yuan, ZHANG Hu-Yong, YU Li-Ping, CAI Xiang-Zhou, FANG De-Qing, ZHONG Chen. Poissonian Reducibility and Thermal Scaling in Nuclear Dissociation[J]. Chin. Phys. Lett., 2001, 18(7): 280-282
Viewed
Full text


Abstract