Chin. Phys. Lett.  2002, Vol. 19 Issue (10): 1399-1402    DOI:
Original Articles |
General Solution and Fractal Localized Structures for the (2+1)-Dimensional Generalized Ablowitz-Kaup-Newell-Segur System
ZHENG Chun-Long1,2,3;ZHANG Jie-Fang3,4
1Department of Physics, Zhejiang Lishui Normal College, Lishui 323000 2Department of Physics, Zhejiang University, Hangzhou 310027 3Institute of Nonlinear Physics, Zhejiang Normal University, Jinhua 321004 4Shanghai Institute of Mathematics and Mechanics, Shanghai University, Shanghai 200072
Cite this article:   
ZHENG Chun-Long, ZHANG Jie-Fang 2002 Chin. Phys. Lett. 19 1399-1402
Download: PDF(256KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the standard truncated Painlevé expansions, we derive a quite general solution of the (2+1)-dimensional generalized Ablowitz-Kaup-Newell-Segur (AKNS) system. Except for the usual localized solutions, such as dromions, lumps, and ring soliton solutions, etc., some special localized excitations with fractal behaviour, i.e., the fractal dromion and fractal lump excitations, are obtained by some types of lower-dimensional fractal patterns.
Keywords: 03.40.Kf      02.30.Jr      03.65.Ge      05.45.Yv     
Published: 01 October 2002
PACS:  03.40.Kf  
  02.30.Jr (Partial differential equations)  
  03.65.Ge (Solutions of wave equations: bound states)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2002/V19/I10/01399
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHENG Chun-Long
ZHANG Jie-Fang
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 1399-1402
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 1399-1402
[3] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 1399-1402
[4] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 1399-1402
[5] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 1399-1402
[6] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 1399-1402
[7] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 1399-1402
[8] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 1399-1402
[9] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 1399-1402
[10] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 1399-1402
[11] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 1399-1402
[12] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 1399-1402
[13] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 1399-1402
[14] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 1399-1402
[15] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 1399-1402
Viewed
Full text


Abstract