Chin. Phys. Lett.  2001, Vol. 18 Issue (7): 918-920    DOI:
Original Articles |
A Lattice Boltzmann Method for the Chemical Clock in the Belousov-Zhabotinskii Reaction
YAN Guang-Wu1,2;YUAN Li1
1LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080 2Department of Mathematics, Jilin University, Changchun 130023
Cite this article:   
YAN Guang-Wu, YUAN Li 2001 Chin. Phys. Lett. 18 918-920
Download: PDF(323KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A lattice Boltzmann method for the Belousov-Zhabotinskii reaction is proposed to simulate the chemical clock. Applying the Chapman-Enskog expansion and multiscale technique, we obtain a series of lattice Boltzmann equations in different timescales, the conservation law in time scale t0 and coefficients of macroscopic equations to find the equilibrium distribution functions. A simple numerical scheme is designed to simulate the diffusion-reaction systems. The numerical example shows that the proposed method can be used to simulate chemical systems with the chemical clock.
Keywords: 47.10.+g     
Published: 01 July 2001
PACS:  47.10.+g  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I7/0918
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAN Guang-Wu
YUAN Li
Related articles from Frontiers Journals
[1] LI Hua-Bing, ZHANG Chao-Ying, LU Xiao-Yang, FANG Hai-Ping. An Effective Method on Two-Dimensional Lattice Boltzmann Simulations with Moving Boundaries[J]. Chin. Phys. Lett., 2007, 24(12): 918-920
[2] CHEN Sheng, LIU Zhao-Hui, HE Zhu, ZHANG Chao, TIAN Zhi-Wei, SHI Bao-Chang, ZHENG Chu-Guang. A Novel Lattice Boltzmann Model For Reactive Flows with Fast Chemistry[J]. Chin. Phys. Lett., 2006, 23(3): 918-920
[3] LIU Xue-Shen, DING Pei-Zhu. Behaviour of Cubic Nonlinear Schrödinger Equation by Using the Symplectic Method[J]. Chin. Phys. Lett., 2004, 21(2): 918-920
[4] LIU Xue-Shen, QI Yue-Ying, DING Pei-Zhu. Periodic and Chaotic Breathers in the Nonlinear Schrödinger Equation[J]. Chin. Phys. Lett., 2004, 21(11): 918-920
[5] QIAO Zhi-Jun, Walter STRAMPP. A Unisonant r-Matrix Structure of Integrable Systems and Its Reductions[J]. Chin. Phys. Lett., 2000, 17(4): 918-920
[6] YAN Guang-wu, SONG Min. Recovery of the Solitons Using a Lattice Boltzmann Model[J]. Chin. Phys. Lett., 1999, 16(2): 918-920
[7] LONG Tao, HE Xian-tu,. Characterization of Pattern Formation from Modulation Instability in the Cubic Schrodinger Equation[J]. Chin. Phys. Lett., 1998, 15(9): 918-920
Viewed
Full text


Abstract