Chin. Phys. Lett.  2001, Vol. 18 Issue (7): 878-881    DOI:
Original Articles |
Controlling Strong Chaos by Adaptive Coupling Method in the Perturbed Cat Map
XU Hai-Bo1,2;WANG Guang-Rui2;CHEN Shi-Gang2
1Graduate School, China Academy of Engineering Physics, P.O. Box 2101, Beijing 100088 2Center for Nonlinear Studies, Institute of Applied Physics and Computational Mathematics, Beijing 100088
Cite this article:   
XU Hai-Bo, WANG Guang-Rui, CHEN Shi-Gang 2001 Chin. Phys. Lett. 18 878-881
Download: PDF(674KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The method for controlling Hamiltonian chaos by adaptive integrable mode coupling is extended to controlling strong chaos by adaptive integrable and near-integrable mode coupling. We illustrate this method with a highly chaotic system, the perturbed cat map. All orbits can be effectively controlled to the periodic or quasiperiodic orbits. The method is robust against the presence of weak external noise.
Keywords: 05.45.-a      05.45.Gg     
Published: 01 July 2001
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I7/0878
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Hai-Bo
WANG Guang-Rui
CHEN Shi-Gang
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 878-881
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 878-881
[3] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 878-881
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 878-881
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 878-881
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 878-881
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 878-881
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 878-881
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 878-881
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 878-881
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 878-881
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 878-881
[13] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 878-881
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 878-881
[15] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 878-881
Viewed
Full text


Abstract