Chin. Phys. Lett.  2001, Vol. 18 Issue (5): 631-633    DOI:
Original Articles |
Topological Quantization of k-Dimensional Topological Defects and Motion Equations
YANG Guo-Hong1;JIANG Ying2;DUAN Yi-Shi3
1Department of Physics, Shanghai University, Shanghai 200436 2Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080 3Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000
Cite this article:   
YANG Guo-Hong, JIANG Ying, DUAN Yi-Shi 2001 Chin. Phys. Lett. 18 631-633
Download: PDF(201KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using Ф-mapping method and kth-order topological tensor current theory, we present a unified theory of describing k-dimensional topological defects and obtain their topological quantization and motion equations. It is shown that the inner structure of the topological tensor current is just the dynamic form of the topological defects, which are generated from the zeros of the m-component order parameter vector field. In this dynamic form, the topological defects are topologically quantized naturally and the topological quantum numbers are determined by the Hopf indices and the Brouwer degrees. As the generalization of Nielsen's Lagrangian and Nambu's action for strings, the action and the motion equations of the topological defects are also derived.
Keywords: 11.27.+d      02.40.-k      04.20.-q      98.80.Cq     
Published: 01 May 2001
PACS:  11.27.+d (Extended classical solutions; cosmic strings, domain walls, texture)  
  02.40.-k (Geometry, differential geometry, and topology)  
  04.20.-q (Classical general relativity)  
  98.80.Cq (Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I5/0631
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Guo-Hong
JIANG Ying
DUAN Yi-Shi
Related articles from Frontiers Journals
[1] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 631-633
[2] M. Sharif*,Z. Yousaf. Shearfree Spherically Symmetric Fluid Models[J]. Chin. Phys. Lett., 2012, 29(5): 631-633
[3] XIE Bai-Song, Mohamedsedik Melike, Dulat Sayipjamal. Electron-Positron Pair Production in an Elliptic Polarized Time Varying Field[J]. Chin. Phys. Lett., 2012, 29(2): 631-633
[4] R. K. Tiwari**, D. Tiwari, Pratibha Shukla. LRS Bianchi Type-II Cosmological Model with a Decaying Lambda Term[J]. Chin. Phys. Lett., 2012, 29(1): 631-633
[5] R. K. Tiwari*, S. Sharma** . Bianchi Type-I String Cosmological Model with Bulk Viscosity and Time-Dependent Λ term[J]. Chin. Phys. Lett., 2011, 28(9): 631-633
[6] HUANG Zeng-Guang**, FANG Wei, , LU Hui-Qing, . Inflation and Singularity of a Bianchi Type-VII0 Universe with a Dirac Field in the Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(8): 631-633
[7] Atul Tyagi*, Keerti Sharma . Locally Rotationally Symmetric Bianchi Type-II Magnetized String Cosmological Model with Bulk Viscous Fluid in General Relativity[J]. Chin. Phys. Lett., 2011, 28(8): 631-633
[8] N. P. Gaikwad**, M. S. Borkar, S. S. Charjan . Bianchi Type-I Massive String Magnetized Barotropic Perfect Fluid Cosmological Model in the Bimetric Theory of Gravitation[J]. Chin. Phys. Lett., 2011, 28(8): 631-633
[9] R. K. Tiwari, Sonia Sharma** . Non Existence of Shear in Bianchi Type-III String Cosmological Models with Bulk Viscosity and Time−Dependent Λ Term[J]. Chin. Phys. Lett., 2011, 28(2): 631-633
[10] HUANG Zeng-Guang**, FANG Wei, LU Hui-Qing, ** . Inflation and Singularity in Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(2): 631-633
[11] Abdussattar**, S. R. Prajapati** . Friedman–Robertson–Walker Models with Late-Time Acceleration[J]. Chin. Phys. Lett., 2011, 28(2): 631-633
[12] CHEN Ju-Hua, **, ZHOU Sheng, WANG Yong-Jiu, . Evolution of Interacting Viscous Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2011, 28(2): 631-633
[13] WANG Hua-Wen, CHENG Hong-Bo* . Virial Relation for Compact Q-Balls in the Complex Signum-Gordon Model[J]. Chin. Phys. Lett., 2011, 28(12): 631-633
[14] Koijam Manihar Singh*, Kangujam Priyokumar Singh** . Cosmic String Universes Embedded with Viscosity[J]. Chin. Phys. Lett., 2011, 28(10): 631-633
[15] XIA Li-Li, CAI Jian-Le. Symmetry of Lagrangians of Nonholonomic Controllable Mechanical Systems[J]. Chin. Phys. Lett., 2010, 27(8): 631-633
Viewed
Full text


Abstract