Chin. Phys. Lett.  2001, Vol. 18 Issue (2): 310-312    DOI:
Original Articles |
An Improved Thin Film Brick-Wall Model of Black Hole Entropy
LIU Wen-Biao; ZHAO Zheng
Department of Physics, Institute of Theoretical Physics, Beijing Normal University, Beijing 100875
Cite this article:   
LIU Wen-Biao, ZHAO Zheng 2001 Chin. Phys. Lett. 18 310-312
Download: PDF(194KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We improve the brick-wall model to take only the contribution of a thin film near the event horizon into account. This improvement not only gives us a satisfactory result, but also avoids some drawbacks in the original brick-wall method such as the little mass approximation, neglecting logarithm term, and taking the term L3 as the contribution of the vacuum surrounding a black hole. It is found that there is an intrinsic relation between the event horizon and the entropy. The event horizon is the characteristic of a black hole, so the entropy calculating of a black hole is also naturally related to its horizon.
Keywords: 97.60.Lf      04.70.Dy      05.30.Ch     
Published: 01 February 2001
PACS:  97.60.Lf (Black holes)  
  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  05.30.Ch (Quantum ensemble theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I2/0310
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Wen-Biao
ZHAO Zheng
Related articles from Frontiers Journals
[1] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 310-312
[2] CHEN Bin,NING Bo**,ZHANG Jia-Ju. Boundary Conditions for NHEK through Effective Action Approach[J]. Chin. Phys. Lett., 2012, 29(4): 310-312
[3] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 310-312
[4] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 310-312
[5] LIU Yan, JING Ji-Liang**. Propagation and Evolution of a Scalar Field in Einstein–Power–Maxwell Spacetime[J]. Chin. Phys. Lett., 2012, 29(1): 310-312
[6] M Sharif**, G Abbas . Phantom Accretion onto the Schwarzschild de-Sitter Black Hole[J]. Chin. Phys. Lett., 2011, 28(9): 310-312
[7] Faiz-ur-Rahman, Salahuddin, M. Akbar** . Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction[J]. Chin. Phys. Lett., 2011, 28(7): 310-312
[8] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 310-312
[9] HE Liang, HUANG Chang-Yin, WANG Ding-Xiong** . A Constraint of Black Hole Mass and the Inner Edge Radius of Relativistic Accretion Disc[J]. Chin. Phys. Lett., 2011, 28(3): 310-312
[10] CAO Guang-Tao**, WANG Yong-Jiu . Interference Phase of Mass Neutrino in Schwarzschild de Sitter Field[J]. Chin. Phys. Lett., 2011, 28(2): 310-312
[11] LIU Tong**, XUE Li . Gravitational Instability in Neutrino Dominated Accretion Disks[J]. Chin. Phys. Lett., 2011, 28(12): 310-312
[12] WEI Yi-Huan**, CHU Zhong-Hui . Thermodynamic Properties of a Reissner–Nordström Quintessence Black Hole[J]. Chin. Phys. Lett., 2011, 28(10): 310-312
[13] GUO Guang-Hai**, DING Xia . Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes[J]. Chin. Phys. Lett., 2011, 28(10): 310-312
[14] PAN Qi-Yuan, JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole[J]. Chin. Phys. Lett., 2010, 27(6): 310-312
[15] WEI Yi-Huan. Mechanical and Thermal Properties of the AH of FRW Universe[J]. Chin. Phys. Lett., 2010, 27(5): 310-312
Viewed
Full text


Abstract