Chin. Phys. Lett.  2001, Vol. 18 Issue (11): 1490-1492    DOI:
Original Articles |
Maxwell-Schrödinger Equation for X-Ray Laser Propagation and Interferometry Measurement of Plasma Electron Density
LIU Timon Cheng-Yi;GUO Hong;FU Xi-Quan;HU Wei;YU Song
Laboratory of Light Transmission Optics, South China Normal University, Guangzhou 510631
Cite this article:   
LIU Timon Cheng-Yi, GUO Hong, FU Xi-Quan et al  2001 Chin. Phys. Lett. 18 1490-1492
Download: PDF(254KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By starting with Maxwell theory of the x-ray laser propagation in collisionless plasmas, we study the phase difference of the probe beam and reference beam of x-ray laser interferometry in measuring the plasma electron density. The basic idea is to reduce the Maxwell equation to a Schroedinger-like equation. By using the quantum mechanical technique and introducing a novel picture, we obtain a modified relation between the phase and the electron density, where the phase corresponds to the interference of probe and reference light and the contribution of gradient of the electron density has been taken into account.
Keywords: 52.70.La      41.50.+h      03.65.-w     
Published: 01 November 2001
PACS:  52.70.La (X-ray and γ-ray measurements)  
  41.50.+h (X-ray beams and x-ray optics)  
  03.65.-w (Quantum mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I11/01490
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Timon Cheng-Yi
GUO Hong
FU Xi-Quan
HU Wei
YU Song
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 1490-1492
[2] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 1490-1492
[3] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 1490-1492
[4] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 1490-1492
[5] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 1490-1492
[6] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 1490-1492
[7] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 1490-1492
[8] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 1490-1492
[9] ZHAO Yang**, WEI Min-Xi, DENG Bo, ZHU Tuo, HU Zhi-Min, XIONG Gang, SHANG Wan-Li, KUANG Long-Yu, YANG Guo-Hong, ZHANG Ji-Yan, YANG Jia-Min . Flat Crystal x-ray Spectrometer for Quantitative Spectral Measurement in the 2–5keV Region[J]. Chin. Phys. Lett., 2011, 28(6): 1490-1492
[10] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 1490-1492
[11] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 1490-1492
[12] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 1490-1492
[13] WANG Zhen, WANG He-Ping, WANG Zhi-Xi**, FEI Shao-Ming . Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices[J]. Chin. Phys. Lett., 2011, 28(2): 1490-1492
[14] RONG Shu-Jun**, LIU Qiu-Yu . Flavor State of the Neutrino: Conditions for a Consistent Definition[J]. Chin. Phys. Lett., 2011, 28(12): 1490-1492
[15] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 1490-1492
Viewed
Full text


Abstract