Chin. Phys. Lett.  2001, Vol. 18 Issue (10): 1312-1315    DOI:
Original Articles |
Total Quantum Statistical Entropy of Reissner-Nordstrom Black Holes: Scalar Field Case
XU Dian-Yan
Institute of Microelectronics and Department of Computer Science and Technology, Peking University, Beijing 100871
Cite this article:   
XU Dian-Yan 2001 Chin. Phys. Lett. 18 1312-1315
Download: PDF(208KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The total quantum statistical entropy of Reissner-Nordstrom (RN) black holes is evaluated. The spacetime of the black holes is divided into three regions-region 1,( r > ro), region 2, ( ro > r > ri), and region 3, (ri > r > 0 ), where ro is the radius of the outer event horizon, and ri is the radius of the inner event horizon. The total quantum statistical entropy of RN black holes is S = S1 + S2 + S3, where Si, ( i = 1,2,3) is the entropy, contributed by region Si (i = 1,2,3). The detailed calculation shows that S2 ≈ 0. S1 = (π2/45) [ kbAo2β3], S3 = -(π2/45) [kbAi2β3], where Ao and Ai are, respectively, the area of the outer and inner event horizons. Thus, as ri approaches ro, in the extreme case the total quantum statistical entropy of RN black holes approaches zero.
Keywords: 04.70.Dy     
Published: 01 October 2001
PACS:  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I10/01312
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Dian-Yan
Related articles from Frontiers Journals
[1] CHEN Bin,NING Bo**,ZHANG Jia-Ju. Boundary Conditions for NHEK through Effective Action Approach[J]. Chin. Phys. Lett., 2012, 29(4): 1312-1315
[2] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 1312-1315
[3] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 1312-1315
[4] M Sharif**, G Abbas . Phantom Accretion onto the Schwarzschild de-Sitter Black Hole[J]. Chin. Phys. Lett., 2011, 28(9): 1312-1315
[5] Faiz-ur-Rahman, Salahuddin, M. Akbar** . Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction[J]. Chin. Phys. Lett., 2011, 28(7): 1312-1315
[6] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 1312-1315
[7] CAO Guang-Tao**, WANG Yong-Jiu . Interference Phase of Mass Neutrino in Schwarzschild de Sitter Field[J]. Chin. Phys. Lett., 2011, 28(2): 1312-1315
[8] WEI Yi-Huan**, CHU Zhong-Hui . Thermodynamic Properties of a Reissner–Nordström Quintessence Black Hole[J]. Chin. Phys. Lett., 2011, 28(10): 1312-1315
[9] GUO Guang-Hai**, DING Xia . Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes[J]. Chin. Phys. Lett., 2011, 28(10): 1312-1315
[10] WEI Yi-Huan. Mechanical and Thermal Properties of the AH of FRW Universe[J]. Chin. Phys. Lett., 2010, 27(5): 1312-1315
[11] LIU Chang-Qing. Absorption Cross Section and Decay Rate of Stationary Axisymmetric Einstein-Maxwell Dilaton Axion Black Hole[J]. Chin. Phys. Lett., 2010, 27(4): 1312-1315
[12] ZHAO Fan, HE Feng. Statistical Mechanical Entropy of a (4+n)-Dimensional Static Spherically Symmetric Black Hole[J]. Chin. Phys. Lett., 2010, 27(2): 1312-1315
[13] JIANG Ke-Xia, KE San-Min, PENG Dan-Tao, FENG Jun. Hawking radiation as tunneling and the unified first law of thermodynamics at the apparent horizon of the FRW universe[J]. Chin. Phys. Lett., 2009, 26(7): 1312-1315
[14] M. Akbar, Asghar Qadir. Gauss-Bonnet and Lovelock Gravities and the Generalized Second Law of Thermodynamics[J]. Chin. Phys. Lett., 2009, 26(6): 1312-1315
[15] HE Feng, ZHAO Fan. Statistical-Mechanical Entropy of a Black Hole with a Global Monopole to All Orders in Planck Length[J]. Chin. Phys. Lett., 2009, 26(4): 1312-1315
Viewed
Full text


Abstract