Chin. Phys. Lett.  2001, Vol. 18 Issue (1): 140-141    DOI:
Original Articles |
Stability of Nonlinear Force-Free Magnetic Fields
HU You-Qiu
Department of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026
Cite this article:   
HU You-Qiu 2001 Chin. Phys. Lett. 18 140-141
Download: PDF(153KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the magnetohydrodynamic energy principle, it is proved that Gold-Hoyle’s nonlinear force-free magnetic field is unstable. This disproves the sufficient criterion for stability of nonlinear force-free magnetic fields given by Krüger that a nonlinear force-free field is stable if the maximum absolute value of the force-free factor is smaller than the lowest eigenvalue associated with the domain of interest.

Keywords: 95.30.Qd      96.60.Hv      52.35.Py     
Published: 01 January 2001
PACS:  95.30.Qd (Magnetohydrodynamics and plasmas)  
  96.60.Hv (Electric and magnetic fields, solar magnetism)  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I1/0140
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU You-Qiu
Related articles from Frontiers Journals
[1] CHEN Shao-Yong, WANG Zhong-Tian, TANG Chang-Jian. Excitation of Internal Kink Mode by Circulating Supra-thermal Electrons[J]. Chin. Phys. Lett., 2012, 29(2): 140-141
[2] XU Tao**, HU Qi-Ming, HU Xi-Wei, YU Qing-Quan . Locking of Tearing Modes by the Error Field[J]. Chin. Phys. Lett., 2011, 28(9): 140-141
[3] LI Ming-Jun**, CHEN Liang . Magnetic Fluid Flows in Porous Media*[J]. Chin. Phys. Lett., 2011, 28(8): 140-141
[4] JI Zhen, **, ZHOU Yu-Fen, HOU Tian-Xiang . A Modified Third-Order Semi-Discrete Central-Upwind Scheme for MHD Simulation[J]. Chin. Phys. Lett., 2011, 28(7): 140-141
[5] HE Yong**, HU Xi-Wei, JIANG Zhong-He . Similar Rayleigh–Taylor Instability of Shock Fronts Perturbed by Corrugated Interfaces[J]. Chin. Phys. Lett., 2011, 28(5): 140-141
[6] JI Zhen, ZHOU Yu-Fen. A Comparison Study of Three CESE Schemes in MHD Simulation[J]. Chin. Phys. Lett., 2010, 27(8): 140-141
[7] JI Xiao-Quan, YANG Qing-Wei, LIU Yi, ZHOU Jun, FENG Bei-Bin, YUAN Bao-Shan. First Observation of Neoclassical Tearing Modes in the HL-2A Tokamak[J]. Chin. Phys. Lett., 2010, 27(6): 140-141
[8] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers[J]. Chin. Phys. Lett., 2010, 27(2): 140-141
[9] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(2): 140-141
[10] G. A. Hoshoudy . Quantum Effects on Rayleigh–Taylor Instability of Incompressible Plasma in a Vertical Magnetic Field[J]. Chin. Phys. Lett., 2010, 27(12): 140-141
[11] YE Wen-Hua, **, WANG Li-Feng, , HE Xian-Tu, . Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(12): 140-141
[12] WANG Li-Feng, YE Wen-Hua, , FAN Zheng-Feng, XUE Chuang, LI Ying-Jun. A Weakly Nonlinear Model for Kelvin-Helmholtz Instability in Incompressible Fluids[J]. Chin. Phys. Lett., 2009, 26(7): 140-141
[13] M. Khayrul Hasan, M. Hossain Ali. Dispersion Relations for Isothermal Plasma around the Horizon of Reissner-Nordström-de Sitter Black Hole[J]. Chin. Phys. Lett., 2009, 26(10): 140-141
[14] WANG Li-Feng, YE Wen-Hua, , FAN Zheng-Feng, LI Ying-Jun. Multimode Coupling Theory for Kelvin-Helmholtz Instability in Incompressible Fluid[J]. Chin. Phys. Lett., 2009, 26(1): 140-141
[15] FAN Zheng-Feng, LUO Ji-Sheng. Weak Nonlinearity of Ablative Rayleigh--Taylor Instability[J]. Chin. Phys. Lett., 2008, 25(2): 140-141
Viewed
Full text


Abstract