Chin. Phys. Lett.  2000, Vol. 17 Issue (4): 246-248    DOI:
Original Articles |
Complex Normal-mode Frequencies of External Perturbations in Generalized Schwarzschild Geometry
YUAN Ning-Yi;LI Xin-Zhou
Department of Physics, Shanghai Teachers University, Shanghai 200234 East China Institute for Theoretical Physics , Shanghai 200237
Cite this article:   
YUAN Ning-Yi, LI Xin-Zhou 2000 Chin. Phys. Lett. 17 246-248
Download: PDF(206KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A modified Wentzel-Kramers-Brillouin approach is used to determine the complex normal-mode frequencies of external perturbations in generalized Schwarzschild geometry. In the λ = 1 case (Schwarzschild geometry), the agreement with other methods is excellent for the low-lying modes. On the contrary, the λ ≠ 1 case of this geometry is unstable against external perturbations.
Keywords: 04.20.Jb      04.30.Nk      04.25.Nx     
Published: 01 April 2000
PACS:  04.20.Jb (Exact solutions)  
  04.30.Nk (Wave propagation and interactions)  
  04.25.Nx (Post-Newtonian approximation; perturbation theory; related Approximations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2000/V17/I4/0246
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YUAN Ning-Yi
LI Xin-Zhou
Related articles from Frontiers Journals
[1] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 246-248
[2] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 246-248
[3] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 246-248
[4] R. K. Tiwari**, D. Tiwari, Pratibha Shukla. LRS Bianchi Type-II Cosmological Model with a Decaying Lambda Term[J]. Chin. Phys. Lett., 2012, 29(1): 246-248
[5] R. K. Tiwari*, S. Sharma** . Bianchi Type-I String Cosmological Model with Bulk Viscosity and Time-Dependent Λ term[J]. Chin. Phys. Lett., 2011, 28(9): 246-248
[6] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 246-248
[7] ZHU Yin . Measurement of the Speed of Gravity[J]. Chin. Phys. Lett., 2011, 28(7): 246-248
[8] XIN Xiang-Peng, LIU Xi-Qiang, ZHANG Lin-Lin . Symmetry Reduction, Exact Solutions and Conservation Laws of the Modified Kadomtzev–Patvishvili-II Equation[J]. Chin. Phys. Lett., 2011, 28(2): 246-248
[9] R. K. Tiwari, Sonia Sharma** . Non Existence of Shear in Bianchi Type-III String Cosmological Models with Bulk Viscosity and Time−Dependent Λ Term[J]. Chin. Phys. Lett., 2011, 28(2): 246-248
[10] YANG Xiao-Song, LIU San-Qiu, **, LI Xiao-Qing, . Modulational Instability for Gravitoelectromagnetic Perturbations with Longitudinal and Transverse Modes[J]. Chin. Phys. Lett., 2011, 28(10): 246-248
[11] PAN Qi-Yuan, JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole[J]. Chin. Phys. Lett., 2010, 27(6): 246-248
[12] LIU Liao. Cosmological Gravitational Wave in de Sitter Spacetime[J]. Chin. Phys. Lett., 2010, 27(2): 246-248
[13] Ciprian Dariescu, Marina-Aura Dariescu. Boson Nebulae Charge[J]. Chin. Phys. Lett., 2010, 27(1): 246-248
[14] EL-NABULSI Ahmad Rami. Extra-Dimensional Cosmology with a Traversable Wormhole[J]. Chin. Phys. Lett., 2009, 26(9): 246-248
[15] N. Ibotombi Singh, S. Kiranmla Chanu, S. Surendra Singh. Cosmological Models with Time Dependent G and Λ Coupling Scalars[J]. Chin. Phys. Lett., 2009, 26(6): 246-248
Viewed
Full text


Abstract