Chin. Phys. Lett.  2000, Vol. 17 Issue (4): 241-242    DOI:
Original Articles |
Exact Solution for a Chain of Coupled Oscillators with Two Types of Atom
LIU Ke-Jia1,3;LU Huai-Xin2,3;ZHANG Yong-De3
1Department of Metallurgy, Guizhou University of Technology, Guiyang 550003 2Department of Physics, Changwei Teachers College, Weifang 261043 3Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
LIU Ke-Jia, LU Huai-Xin, ZHANG Yong-De 2000 Chin. Phys. Lett. 17 241-242
Download: PDF(124KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A quantum transformation that can diagonalize the Hamiltonian of a ring of N coupled diatomic oscillators is found. By means of the transformation, the dispersion relation of the atomic system is obtained. For large N it turns out that the dispersion relation resembles to the phonon spectrum of the lattice vibration derived by Newton's equation of motion.
Keywords: 03.65.-w      63.10.+a     
Published: 01 April 2000
PACS:  03.65.-w (Quantum mechanics)  
  63.10.+a (General theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2000/V17/I4/0241
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Ke-Jia
LU Huai-Xin
ZHANG Yong-De
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 241-242
[2] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 241-242
[3] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 241-242
[4] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 241-242
[5] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 241-242
[6] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 241-242
[7] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 241-242
[8] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 241-242
[9] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 241-242
[10] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 241-242
[11] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 241-242
[12] WANG Zhen, WANG He-Ping, WANG Zhi-Xi**, FEI Shao-Ming . Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices[J]. Chin. Phys. Lett., 2011, 28(2): 241-242
[13] RONG Shu-Jun**, LIU Qiu-Yu . Flavor State of the Neutrino: Conditions for a Consistent Definition[J]. Chin. Phys. Lett., 2011, 28(12): 241-242
[14] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 241-242
[15] XU Xue-Fen, ZHU Shi-Qun. From the Thermo Wigner Operator to the Thermo Husimi Operator in Thermo Field Dynamics[J]. Chin. Phys. Lett., 2010, 27(9): 241-242
Viewed
Full text


Abstract