Chin. Phys. Lett.  2000, Vol. 17 Issue (4): 238-240    DOI:
Original Articles |
Minimum Uncertainty States for Number-Difference-Phase Uncertainty Relation in NFM Operational Phase Description
FAN Hong-Yi1,2;SUN Zhi-Hu2
1Department of Applied Physics, Shanghai Jiao Tong University, Shanghai, 200030 2Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026
Cite this article:   
FAN Hong-Yi, SUN Zhi-Hu 2000 Chin. Phys. Lett. 17 238-240
Download: PDF(176KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract For the Noh, Fougères and Mandel (NFM) operational quantum phase description, which is based on an eight-port homodyne-detection, we derive the minimum uncertainty states for the number-difference-phase uncertainty relation. The derivation makes full use of the newly constructed |q,r> representation which is the common eigenvector of the two-mode photon number-difference aa - bb and (a+b)(a+ b).

Keywords: 03.65.Ca      42.50.–p     
Published: 01 April 2000
PACS:  03.65.Ca (Formalism)  
  42.50.–p  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2000/V17/I4/0238
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FAN Hong-Yi
SUN Zhi-Hu
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 238-240
[2] FAN Hong-Yi, CHEN Jun-Hua, WANG Tong-Tong. Squeezing-Displacement Dynamics for One-Dimensional Potential Well with Two Mobile Walls where Wavefunctions Vanish[J]. Chin. Phys. Lett., 2010, 27(5): 238-240
[3] FAN Hong-Yi, JIANG Nian-Quan. New Approach for Normalizing Photon-Added and Photon-Subtracted Squeezed States[J]. Chin. Phys. Lett., 2010, 27(4): 238-240
[4] Koji Nagata. Bell Operator Method to Classify Local Realistic Theories[J]. Chin. Phys. Lett., 2010, 27(3): 238-240
[5] FAN Hong-Yi, JIANG Nian-Quan. Relation between Characteristic Function of Density Operator and Tomogram[J]. Chin. Phys. Lett., 2009, 26(11): 238-240
[6] XU Xue-Fen, ZHU Shi-Qun. Wigner Function of Thermo-Invariant Coherent State[J]. Chin. Phys. Lett., 2008, 25(8): 238-240
[7] WANG Zhi-Yong, XIONG Cai-Dong, Keller Ole. The First-Quantized Theory of Photons[J]. Chin. Phys. Lett., 2007, 24(2): 238-240
[8] CHEN Jing-Bo. Multisymplectic Geometry and Its Applications for the Schrodinger Equation in Quantum Mechanics[J]. Chin. Phys. Lett., 2007, 24(2): 238-240
[9] Babayev A. M., Cakmaktepe S.. The Singular Kane Oscillator[J]. Chin. Phys. Lett., 2006, 23(1): 238-240
[10] ZHANG Yong, CAO Wan-Cang, LONG Gui-Lu,. Creation of Multipartite Entanglement and Entanglement Transfer via Heisenberg Interaction[J]. Chin. Phys. Lett., 2005, 22(9): 238-240
[11] B. Gö, nül. Exact Treatment of l ≠ 0 States[J]. Chin. Phys. Lett., 2004, 21(9): 238-240
[12] B.Gö, nül. Generalized Supersymmetric Perturbation Theory[J]. Chin. Phys. Lett., 2004, 21(12): 238-240
[13] HOU Guang, HUANG Min-Xin, ZHANG Yong-De,. Quantum Multiple Access Channel[J]. Chin. Phys. Lett., 2002, 19(1): 238-240
[14] FAN Hong-Yi, CHENG Hai-Ling. Two-Parameter Radon Transformation of the Wigner Operator and Its Inverse[J]. Chin. Phys. Lett., 2001, 18(7): 238-240
[15] FAN Hong-Yi, LIU Nai-Le. Mixed Squeezing for a Pair of Two-Mode Squeezed States[J]. Chin. Phys. Lett., 2001, 18(3): 238-240
Viewed
Full text


Abstract