Chin. Phys. Lett.  2000, Vol. 17 Issue (11): 781-783    DOI:
Original Articles |
Some Special Types of Multisoliton Solutions of the Nizhnik-Novikov-Vesselov Equation
LOU Sen-Yue
Department of Applied Physics, Shanghai Jiao Tong University, Shanghai 200030 also Department of Physics, Ningbo University, Ningbo 315211
Cite this article:   
LOU Sen-Yue 2000 Chin. Phys. Lett. 17 781-783
Download: PDF(232KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the standard truncated Painlevé analysis, we have obtained some new special types of soliton solutions of a (2+1)-dimensional integrable model, the Nizhnik-Novikov-Vesselov equation. Starting from the standard truncation approach in the Painlevé analysis, one can obtain a Bäcklund transformation to find a new solution from a known one. Usually, one can obtain only a single solitary wave solution from the Bäcklund transformation related to the truncated Painlevé analysis starting from the trivial vacuum solution. In this paper, we find some special types of the multisoliton solutions from the truncated Painlevé analysis and the trivial vacuum solution.
Keywords: 03.40.Kf      02.30.Jr      03.65.-w     
Published: 01 November 2000
PACS:  03.40.Kf  
  02.30.Jr (Partial differential equations)  
  03.65.-w (Quantum mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2000/V17/I11/0781
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LOU Sen-Yue
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 781-783
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 781-783
[3] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 781-783
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 781-783
[5] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 781-783
[6] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 781-783
[7] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 781-783
[8] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 781-783
[9] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 781-783
[10] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 781-783
[11] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 781-783
[12] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 781-783
[13] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 781-783
[14] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 781-783
[15] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 781-783
Viewed
Full text


Abstract