Chin. Phys. Lett.  1999, Vol. 16 Issue (5): 321-323    DOI:
Original Articles |
Motion of Test Particle in Generalized Schwarzschild Geometry
ZHAI Xiang-hua1;YUAN Ning-yi1;LI Xin-zhou2
1Department of Physics, 2East China Institute for Theoretical Physics, East China University of Science and Technology, Shanghai 200237
Cite this article:   
ZHAI Xiang-hua, YUAN Ning-yi, LI Xin-zhou 1999 Chin. Phys. Lett. 16 321-323
Download: PDF(184KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By the Hamilton-Jacobi formalism, the features of orbits of a test particle moving in generalized Schwarzschild geometries with the parameter 0 < λ ≤ 1 are studied, where the intensity of λ corresponds to the contribution of massless scalar field. In special case λ= 1, it is reduced to the Schwarzschild metric. It is found that λ= 1/2 is a critical point, when 1/2 ≤ λ < 1 the qualitative features are similar to Schwarzschild geometry whereas the case of 0 < λ < 1/2 is different from the case of λ= 1.

Keywords: 04.20.-q      02.40.Ky      98.90.+s     
Published: 01 May 1999
PACS:  04.20.-q (Classical general relativity)  
  02.40.Ky (Riemannian geometries)  
  98.90.+s (Other topics on stellar systems; interstellar medium; galactic and extragalactic objects and systems; the Universe)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1999/V16/I5/0321
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAI Xiang-hua
YUAN Ning-yi
LI Xin-zhou
Related articles from Frontiers Journals
[1] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 321-323
[2] M. Sharif*,Z. Yousaf. Shearfree Spherically Symmetric Fluid Models[J]. Chin. Phys. Lett., 2012, 29(5): 321-323
[3] Atul Tyagi*, Keerti Sharma . Locally Rotationally Symmetric Bianchi Type-II Magnetized String Cosmological Model with Bulk Viscous Fluid in General Relativity[J]. Chin. Phys. Lett., 2011, 28(8): 321-323
[4] N. P. Gaikwad**, M. S. Borkar, S. S. Charjan . Bianchi Type-I Massive String Magnetized Barotropic Perfect Fluid Cosmological Model in the Bimetric Theory of Gravitation[J]. Chin. Phys. Lett., 2011, 28(8): 321-323
[5] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 321-323
[6] Atul Tyagi, Keerti Sharma. Bianchi Type-V Magnetized String Cosmological Model with Variable Magnetic Permeability for Viscous Fluid distribution[J]. Chin. Phys. Lett., 2010, 27(8): 321-323
[7] Atul Tyagi, Keerti Sharma, Payal Jain. Bianchi Type-IX String Cosmological Models for Perfect Fluid Distribution in General Relativity[J]. Chin. Phys. Lett., 2010, 27(7): 321-323
[8] EL-NABULSI Ahmad Rami. Extra-Dimensional Cosmology with a Traversable Wormhole[J]. Chin. Phys. Lett., 2009, 26(9): 321-323
[9] N. Ibotombi Singh, S. Kiranmla Chanu, S. Surendra Singh. Cosmological Models with Time Dependent G and Λ Coupling Scalars[J]. Chin. Phys. Lett., 2009, 26(6): 321-323
[10] Arbab Ibrahim Arbab. Comment on `Five-Dimensional Cosmological Model with Variable[J]. Chin. Phys. Lett., 2008, 25(1): 321-323
[11] BALI Raj, PAREEK Umesh Kumar, PRADHAN Anirudh. Bianchi Type-I Massive String Magnetized Barotropic Perfect Fluid Cosmological Model in General Relativity[J]. Chin. Phys. Lett., 2007, 24(8): 321-323
[12] H. Baysal, .I. Yilmaz. Five-Dimensional Cosmological Model with Variable G and Λ[J]. Chin. Phys. Lett., 2007, 24(8): 321-323
[13] BALI Raj, PRADHAN Anirudh. Bianchi Type-III String Cosmological Models with Time Dependent Bulk Viscosity[J]. Chin. Phys. Lett., 2007, 24(2): 321-323
[14] CHEN Ju-Hua, WANG Yong-Jiu. Geodetic Precession in Schwarzschild Spacetime Surrounded by Quintessence[J]. Chin. Phys. Lett., 2007, 24(11): 321-323
[15] Raj Bali, R. S.Tikekar. C-field Cosmology with Variable G in the Flat Friedmann--Robertson--Walker Model[J]. Chin. Phys. Lett., 2007, 24(11): 321-323
Viewed
Full text


Abstract