Chin. Phys. Lett.  1999, Vol. 16 Issue (5): 318-320    DOI:
Original Articles |
General Character of Quantum Regular Motion and Quantum-Classical Correspondence
XU Gong-ou1;YANG Ya-tian2;XING Yong-zhong1
Department of Physics, Nanjing University, Nanjing 210093 Department of Physics, Fujian Normal University, Fuzhou 350007
Cite this article:   
XU Gong-ou, YANG Ya-tian, XING Yong-zhong 1999 Chin. Phys. Lett. 16 318-320
Download: PDF(255KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In order to have a complete description of the spatio-temporal evolution of a quantum state, the initial state should be properly specified as the coherent state corresponding to a definite dynamical symmetry. Then we have qualitatively different situations where the initial coherent state evolves under the action of a system having or not having the same dynamical symmetry. In the former case, we have regular motion with the general character which tends to that of the corresponding classical case in the limit ћ → 0. While in the latter case, we may have energy regions of global stochasticity with characters closely related to the initial dynamical symmetry strongly violated.
Keywords: 03.65.-w      03.65.Fd      05.45.+b     
Published: 01 May 1999
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Fd (Algebraic methods)  
  05.45.+b  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1999/V16/I5/0318
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Gong-ou
YANG Ya-tian
XING Yong-zhong
Related articles from Frontiers Journals
[1] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 318-320
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 318-320
[3] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 318-320
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 318-320
[5] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 318-320
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 318-320
[7] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 318-320
[8] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 318-320
[9] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 318-320
[10] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 318-320
[11] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 318-320
[12] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 318-320
[13] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 318-320
[14] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 318-320
[15] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 318-320
Viewed
Full text


Abstract