Chin. Phys. Lett.  1999, Vol. 16 Issue (4): 247-248    DOI:
Original Articles |
Spherically Symmetric Cosmological Solutions of Einstein’s Equations
Mohammed Ashraful Islam
Department of Mathematics, and Research Centre for Mathematical and Physical Sciences, Chittagong University, Chittagong, Bangladesh
Cite this article:   
Mohammed Ashraful Islam 1999 Chin. Phys. Lett. 16 247-248
Download: PDF(97KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two sets of solution of the Einstein’s equations of general theory of relativity which is spherically-symmetric and nonstatic homogeneous isotropic universe for perfect fluid are obtained. The first solution is the Einstein de-Sitter type containing a scale factor ( √6πкGt + a)4/3 and an arbitrary function f (R) of radial space coordinates. The second solution is for stiff equation of state p = ρc2, which also has a scale factor [3 √8πaG∫t0ξ(t)dt]2/3 and an arbitrary function h(R) of radial space coordinates.
Keywords: 04.20.Jb      98.80.Dr      95.30.Sf     
Published: 01 April 1999
PACS:  04.20.Jb (Exact solutions)  
  98.80.Dr  
  95.30.Sf (Relativity and gravitation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1999/V16/I4/0247
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mohammed Ashraful Islam
Related articles from Frontiers Journals
[1] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 247-248
[2] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 247-248
[3] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 247-248
[4] R. K. Tiwari**, D. Tiwari, Pratibha Shukla. LRS Bianchi Type-II Cosmological Model with a Decaying Lambda Term[J]. Chin. Phys. Lett., 2012, 29(1): 247-248
[5] R. K. Tiwari*, S. Sharma** . Bianchi Type-I String Cosmological Model with Bulk Viscosity and Time-Dependent Λ term[J]. Chin. Phys. Lett., 2011, 28(9): 247-248
[6] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 247-248
[7] AO Xi-Chen**, LI Xin-Zhou, XI Ping . Cosmological Dynamics of de Sitter Gravity[J]. Chin. Phys. Lett., 2011, 28(4): 247-248
[8] R. K. Tiwari, Sonia Sharma** . Non Existence of Shear in Bianchi Type-III String Cosmological Models with Bulk Viscosity and Time−Dependent Λ Term[J]. Chin. Phys. Lett., 2011, 28(2): 247-248
[9] XIN Xiang-Peng, LIU Xi-Qiang, ZHANG Lin-Lin . Symmetry Reduction, Exact Solutions and Conservation Laws of the Modified Kadomtzev–Patvishvili-II Equation[J]. Chin. Phys. Lett., 2011, 28(2): 247-248
[10] ZHANG Tao, WU Pu-Xun, YU Hong-Wei, ** . Gödel-Type Universes in f(R) Gravity with an Arbitrary Coupling between Matter and Geometry[J]. Chin. Phys. Lett., 2011, 28(12): 247-248
[11] WEN De-Hua. Equation of State in the σ-ω-ρ Model Supported by the Observational Data of 4U 1608-52 Neutron Star[J]. Chin. Phys. Lett., 2010, 27(1): 247-248
[12] Ciprian Dariescu, Marina-Aura Dariescu. Boson Nebulae Charge[J]. Chin. Phys. Lett., 2010, 27(1): 247-248
[13] EL-NABULSI Ahmad Rami. Extra-Dimensional Cosmology with a Traversable Wormhole[J]. Chin. Phys. Lett., 2009, 26(9): 247-248
[14] Shri Ram, M. K. Verma, Mohd. Zeyauddin. Spatially Homogeneous Bianchi Type V Cosmological Model in the Scale-Covariant Theory of Gravitation[J]. Chin. Phys. Lett., 2009, 26(8): 247-248
[15] SHEN Ming. A New Solution to Einstein's Field Equations[J]. Chin. Phys. Lett., 2009, 26(6): 247-248
Viewed
Full text


Abstract