Chin. Phys. Lett.  1999, Vol. 16 Issue (1): 9-11    DOI:
Original Articles |
Factorizability of the Two-Component Bose-Einstein Condensate Ground State
HUANG Hu1,2;LI Shi-qun1
1Department of Modern Applied Physics, Tsinghua University, Beijing 100084 2Rochester Theory Center for Optical Science and Engineering, University of Rochester, Rochester, NY 14627, USA
Cite this article:   
HUANG Hu, LI Shi-qun 1999 Chin. Phys. Lett. 16 9-11
Download: PDF(220KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In this report the two-component Bose-Einstein condensate ground state is shown to be in factorized form following energy minimization argument. The argument can also be applied to excited states. This implies that for stationary states the two components are not entangled. Interaction terms between components are included.

Keywords: 03.75.Fi      05.30.-d     
Published: 01 January 1999
PACS:  03.75.Fi  
  05.30.-d (Quantum statistical mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1999/V16/I1/09
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Hu
LI Shi-qun
Related articles from Frontiers Journals
[1] TAO Yong*,CHEN Xun. Statistical Physics of Economic Systems: a Survey for Open Economies[J]. Chin. Phys. Lett., 2012, 29(5): 9-11
[2] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 9-11
[3] HENG Tai-Hua, LIN Bing-Sheng, JING Si-Cong. Wigner Functions for the Bateman System on Noncommutative Phase Space[J]. Chin. Phys. Lett., 2010, 27(9): 9-11
[4] ZHU Ren-Gui, WANG An-Min. Statistical Interaction Term of One-Dimensional Anyon Models[J]. Chin. Phys. Lett., 2010, 27(4): 9-11
[5] HU Li-Yun, FAN Hong-Yi. Generalized Positive-Definite Operator in Quantum Phase Space Obtained by Virtue of the Weyl Quantization Rule[J]. Chin. Phys. Lett., 2009, 26(6): 9-11
[6] WEI Xiu-Fang, TANG ong-An, YONG Wen-Mei, XUE Ju-Kui. Nonlinear Landau--Zener Tunnelling with Two and Three-Body Interactions[J]. Chin. Phys. Lett., 2008, 25(5): 9-11
[7] WANG Chun-Yang, BAO Jing-Dong. The Third Law of Quantum Thermodynamics in the Presence of Anomalous Couplings[J]. Chin. Phys. Lett., 2008, 25(2): 9-11
[8] ZHU Jing-Min. Quantum Phase Transitions in Matrix Product States[J]. Chin. Phys. Lett., 2008, 25(10): 9-11
[9] HENG Tai-Hua, LIN Bing-Sheng, JING Si-Cong. Wigner Functions for Non-Hamiltonian Systems on Noncommutative Space[J]. Chin. Phys. Lett., 2008, 25(10): 9-11
[10] ZHU Kun-Yan, TAN Lei, GAO Xiang, WANG Daw-Wei. Quantum Fluids of Self-Assembled Chains of Polar Molecules at Finite Temperature[J]. Chin. Phys. Lett., 2008, 25(1): 9-11
[11] XU Zhi-Jun, ZHANG Dong-Mei. Evolution of Matter Wave Interference of Bose-Condensed Gas in a 1D Optical Lattice[J]. Chin. Phys. Lett., 2007, 24(9): 9-11
[12] JIN Jing, TANG Yi. Ground-State Properties of Charged Bosons Confined in a One-Dimensional Harmonic Double-Well Trap: Diffusion Monte Carlo Calculations[J]. Chin. Phys. Lett., 2007, 24(9): 9-11
[13] ZHANG Qiu-Lan, GU Shi-Jian. Spin Transport Properties of the One-Dimensional Heisenberg Chain: Bethe-Ansatz Solution with Twist Boundary Conditions[J]. Chin. Phys. Lett., 2007, 24(5): 9-11
[14] BI Qiao,. Fluctuation of Quantum Information Density in Curved Time--Space[J]. Chin. Phys. Lett., 2007, 24(4): 9-11
[15] HENG Tai-Hua, LI Ping, JING Si-Cong. Modified Form of Wigner Functions for Non-Hamiltonian Systems[J]. Chin. Phys. Lett., 2007, 24(3): 9-11
Viewed
Full text


Abstract